On the Mishou Theorem with an Algebraic Parameter
- Autores: Laurinčikas A.1
-
Afiliações:
- Institute of Mathematics
- Edição: Volume 60, Nº 6 (2019)
- Páginas: 1075-1082
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172766
- DOI: https://doi.org/10.1134/S0037446619060144
- ID: 172766
Citar
Resumo
The Riemann zeta-function and the Hurwitz zeta-function with transcendental or rational parameter are universal in the sense of Voronin: their shifts approximate broad classes of analytic functions. The universality of the Hurwitz zeta-function with an algebraic irrational parameter is an open problem since 1979. Mishou proved the joint universality of the Riemann zeta-function and the Hurwitz zeta-function with transcendental parameter. Mishou’s theorem with an algebraic irrational parameter is also an open problem. Here we obtain first results in this direction. We prove that there exists a nonempty closed subset of a two-dimensional set of analytic functions such that every pair in it is approximated by the shifts mentioned.
Palavras-chave
Sobre autores
A. Laurinčikas
Institute of Mathematics
Autor responsável pela correspondência
Email: antanas.laurincikas@mif.vu.lt
Lituânia, Vilnius
Arquivos suplementares
