The Poincaré Inequality and p-Connectedness of a Stratified Set


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We extend the Poincaré inequality to functions of Sobolev type on a stratified set. The integrability exponents in these analogs depend on the geometric characteristics of the stratified set which show to what extent their strata are connected with each other and the boundary. We apply the results to proving the solvability of boundary value problems for the p-Laplacian with boundary conditions of Neumann or Wentzel type.

About the authors

N. S. Dairbekov

Kazakh-British Technical University

Author for correspondence.
Email: Nurlan.Dairbekov@gmail.com
Kazakhstan, Almaty

O. M. Penkin

Kazakh-British Technical University

Email: Nurlan.Dairbekov@gmail.com
Kazakhstan, Almaty

L. O. Sarybekova

Kazakh-British Technical University

Email: Nurlan.Dairbekov@gmail.com
Kazakhstan, Almaty

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.