The Poincaré Inequality and p-Connectedness of a Stratified Set
- Authors: Dairbekov N.S.1, Penkin O.M.1, Sarybekova L.O.1
-
Affiliations:
- Kazakh-British Technical University
- Issue: Vol 59, No 6 (2018)
- Pages: 1024-1033
- Section: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172097
- DOI: https://doi.org/10.1134/S003744661806006X
- ID: 172097
Cite item
Abstract
We extend the Poincaré inequality to functions of Sobolev type on a stratified set. The integrability exponents in these analogs depend on the geometric characteristics of the stratified set which show to what extent their strata are connected with each other and the boundary. We apply the results to proving the solvability of boundary value problems for the p-Laplacian with boundary conditions of Neumann or Wentzel type.
Keywords
About the authors
N. S. Dairbekov
Kazakh-British Technical University
Author for correspondence.
Email: Nurlan.Dairbekov@gmail.com
Kazakhstan, Almaty
O. M. Penkin
Kazakh-British Technical University
Email: Nurlan.Dairbekov@gmail.com
Kazakhstan, Almaty
L. O. Sarybekova
Kazakh-British Technical University
Email: Nurlan.Dairbekov@gmail.com
Kazakhstan, Almaty
Supplementary files
