Maximal Surfaces on Five-Dimensional Group Structures
- 作者: Karmanova M.B.1
-
隶属关系:
- Sobolev Institute of Mathematics
- 期: 卷 59, 编号 3 (2018)
- 页面: 442-457
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171859
- DOI: https://doi.org/10.1134/S0037446618030072
- ID: 171859
如何引用文章
详细
For the classes of the mappings Lipschitz in the sub-Riemannian sense and taking values in the Heisenberg group we introduce some suitable notions of variation of an argument and the corresponding increment of the area functional and derive several basic properties of maximal surfaces on the five-dimensional sub-Lorentzian structures.
作者简介
M. Karmanova
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: maryka@math.nsc.ru
俄罗斯联邦, Novosibirsk
补充文件
