Estimates of The Fourier Widths of the Classes Of Periodic Functions With Given Majorant of the Mixed Modulus of Smoothness
- 作者: Balgimbayeva S.A.1, Smirnov T.I.1
-
隶属关系:
- Institute of Mathematics and Mathematical Modeling
- 期: 卷 59, 编号 2 (2018)
- 页面: 217-230
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171735
- DOI: https://doi.org/10.1134/S0037446618020040
- ID: 171735
如何引用文章
详细
We obtain some order-sharp estimates for the Fourier widths of Nikol'skii–Besov and Lizorkin–Triebel function classes with given majorant of the mixed modulus of smoothness in the Lebesgue space for a few relations between the parameters of the class and the space. The upper bounds follow from estimates of the approximation of functions of these classes by special partial sums of their Fourier series with respect to the multiple system of periodized Meyer wavelets.
作者简介
Sh. Balgimbayeva
Institute of Mathematics and Mathematical Modeling
编辑信件的主要联系方式.
Email: sholpan.balgyn@gmail.com
哈萨克斯坦, Almaty
T. Smirnov
Institute of Mathematics and Mathematical Modeling
Email: sholpan.balgyn@gmail.com
哈萨克斯坦, Almaty
补充文件
