Alternative Proof of Mironov’s Results on Commuting Self-Adjoint Operators of Rank 2
- Авторы: Oganesyan V.S.1
-
Учреждения:
- Moscow State University
- Выпуск: Том 59, № 1 (2018)
- Страницы: 102-106
- Раздел: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171673
- DOI: https://doi.org/10.1134/S0037446618010111
- ID: 171673
Цитировать
Аннотация
We give an alternative proof of Mironov’s results on commuting self-adjoint operators of rank 2. Mironov’s proof is based on Krichever’s complicated theory of the existence of a high-rank Baker–Akhiezer function. In contrast to Mironov’s proof, our proof is simpler but the results are slightly weaker. Note that the method of this article can be extended to matrix operators. Using the method, we can construct the first explicit examples of matrix commuting differential operators of rank 2 and arbitrary genus.
Ключевые слова
Об авторах
V. Oganesyan
Moscow State University
Автор, ответственный за переписку.
Email: vardan.o@mail.ru
Россия, Moscow
Дополнительные файлы
