Geodesics and Curvatures of Special Sub-Riemannian Metrics on Lie Groups
- Авторы: Berestovskii V.N.1
-
Учреждения:
- Sobolev Institute of Mathematics
- Выпуск: Том 59, № 1 (2018)
- Страницы: 31-42
- Раздел: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171641
- DOI: https://doi.org/10.1134/S0037446618010044
- ID: 171641
Цитировать
Аннотация
Let G be a full connected semisimple isometry Lie group of a connected Riemannian symmetric space M = G/K with the stabilizer K; p : G → G/K = M the canonical projection which is a Riemannian submersion for some G-left invariant and K-right invariant Riemannian metric on G, and d is a (unique) sub-Riemannian metric on G defined by this metric and the horizontal distribution of the Riemannian submersion p. It is proved that each geodesic in (G, d) is normal and presents an orbit of some one-parameter isometry group. By the Solov'ev method, using the Cartan decomposition for M = G/K, the author found the curvatures of the homogeneous sub-Riemannian manifold (G, d). In the case G = Sp(1) × Sp(1) with the Riemannian symmetric space S3 = Sp(1) = G/ diag(Sp(1) × Sp(1)) the curvatures and torsions are calculated of images in S3 of all geodesics on (G, d) with respect to p.
Об авторах
V. Berestovskii
Sobolev Institute of Mathematics
Автор, ответственный за переписку.
Email: vberestov@inbox.ru
Россия, Novosibirsk
Дополнительные файлы
