On Dark Computably Enumerable Equivalence Relations
- Авторлар: Bazhenov N.A.1, Kalmurzaev B.S.2
-
Мекемелер:
- Sobolev Institute of Mathematics
- Al-Farabi Kazakh National University
- Шығарылым: Том 59, № 1 (2018)
- Беттер: 22-30
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171638
- DOI: https://doi.org/10.1134/S0037446618010032
- ID: 171638
Дәйексөз келтіру
Аннотация
We study computably enumerable (c.e.) relations on the set of naturals. A binary relation R on ω is computably reducible to a relation S (which is denoted by R ≤cS) if there exists a computable function f(x) such that the conditions (xRy) and (f(x)Sf(y)) are equivalent for all x and y. An equivalence relation E is called dark if it is incomparable with respect to ≤c with the identity equivalence relation. We prove that, for every dark c.e. equivalence relation E there exists a weakly precomplete dark c.e. relation F such that E ≤cF. As a consequence of this result, we construct an infinite increasing ≤c-chain of weakly precomplete dark c.e. equivalence relations. We also show the existence of a universal c.e. linear order with respect to ≤c.
Авторлар туралы
N. Bazhenov
Sobolev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: bazhenov@math.nsc.ru
Ресей, Novosibirsk
B. Kalmurzaev
Al-Farabi Kazakh National University
Email: bazhenov@math.nsc.ru
Қазақстан, Almaty
Қосымша файлдар
