On Dark Computably Enumerable Equivalence Relations


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study computably enumerable (c.e.) relations on the set of naturals. A binary relation R on ω is computably reducible to a relation S (which is denoted by RcS) if there exists a computable function f(x) such that the conditions (xRy) and (f(x)Sf(y)) are equivalent for all x and y. An equivalence relation E is called dark if it is incomparable with respect to ≤c with the identity equivalence relation. We prove that, for every dark c.e. equivalence relation E there exists a weakly precomplete dark c.e. relation F such that EcF. As a consequence of this result, we construct an infinite increasing ≤c-chain of weakly precomplete dark c.e. equivalence relations. We also show the existence of a universal c.e. linear order with respect to ≤c.

Авторлар туралы

N. Bazhenov

Sobolev Institute of Mathematics

Хат алмасуға жауапты Автор.
Email: bazhenov@math.nsc.ru
Ресей, Novosibirsk

B. Kalmurzaev

Al-Farabi Kazakh National University

Email: bazhenov@math.nsc.ru
Қазақстан, Almaty

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018