Parabolic spline interpolation for functions with large gradient in the boundary layer
- 作者: Blatov I.A.1, Zadorin A.I.2, Kitaeva E.V.3
-
隶属关系:
- Volga State University of Telecommunications and Informatics
- Sobolev Institute of Mathematics, Omsk Branch
- Samara National Research University
- 期: 卷 58, 编号 4 (2017)
- 页面: 578-590
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171283
- DOI: https://doi.org/10.1134/S0037446617040036
- ID: 171283
如何引用文章
详细
We consider the problem of Subbotin’s parabolic spline interpolation for functions with large gradient domains. In the case of the common piecewise uniform Shishkin’s mesh we obtain two-sided accuracy estimates for the class of functions with exponential boundary layer. The spline interpolation accuracy estimates are not uniform in a small parameter, while the error itself can grow unboundedly as the small parameter vanishes and the number N of nodes remains fixed. We include the results of some simulations.
作者简介
I. Blatov
Volga State University of Telecommunications and Informatics
编辑信件的主要联系方式.
Email: blatow@mail.ru
俄罗斯联邦, Samara
A. Zadorin
Sobolev Institute of Mathematics, Omsk Branch
Email: blatow@mail.ru
俄罗斯联邦, Omsk
E. Kitaeva
Samara National Research University
Email: blatow@mail.ru
俄罗斯联邦, Samara
补充文件
