Estimates for a spectral parameter in elliptic boundary value problems with discontinuous nonlinearities


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Under study are the two classes of elliptic spectral problems with homogeneous Dirichlet conditions and discontinuous nonlinearities (the parameter occurs in the nonlinearity multiplicatively). In the former case the nonlinearity is nonnegative and vanishes for the values of the phase variable not exceeding some positive number c; it has linear growth at infinity in the phase variable u and the only discontinuity at u = c. We prove that for every spectral parameter greater than the minimal eigenvalue of the differential part of the equation with the homogeneous Dirichlet condition, the corresponding boundary value problem has a nontrivial strong solution. The corresponding free boundary in this case is of zero measure. A lower estimate for the spectral parameter is established as well. In the latter case the differential part of the equation is formally selfadjoint and the nonlinearity has sublinear growth at infinity. Some upper estimate for the spectral parameter is given in this case.

Авторлар туралы

V. Pavlenko

Chelyabinsk State University

Хат алмасуға жауапты Автор.
Email: pavlenko@csu.ru
Ресей, Chelyabinsk

D. Potapov

St. Petersburg State University

Email: pavlenko@csu.ru
Ресей, St. Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017