Narrow orthogonally additive operators in lattice-normed spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a new class of narrow orthogonally additive operators in lattice-normed spaces and prove the narrowness of every C-compact norm-laterally-continuous orthogonally additive operator from a Banach–Kantorovich space V into a Banach space Y. Furthermore, every dominated Urysohn operator from V into a Banach sequence lattice Y is also narrow. We establish that the order narrowness of a dominated Urysohn operator from a Banach–Kantorovich space V into a Banach space with mixed norm W implies the order narrowness of the least dominant of the operator.

作者简介

M. Pliev

Southern Mathematical Institute; Peoples’ Friendship University of Russia

编辑信件的主要联系方式.
Email: plimarat@yandex.ru
俄罗斯联邦, Vladikavkaz; Moscow

X. Fang

Tongji University

Email: plimarat@yandex.ru
中国, Shanghai

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017