Quasiconformality of the injective mappings transforming spheres to quasispheres


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove that every injective mapping of a domain \(D \subset \overline {{\mathbb{R}^n}} \) transforming spheres Σ ⊂ D to K-quasispheres (the images of spheres under K-quasiconformal automorphisms of \(\overline {{\mathbb{R}^n}} \)) is K′-quasiconformal with K′ depending only on K and tending to 1 as K → 1. This is a quasiconformal analog of the classical Carathéodory Theorem on the Möbius property of an injective mapping of a domain DRn which sends spheres to spheres.

作者简介

V. Aseev

Sobolev Institute of Mathematics Novosibirsk State University

编辑信件的主要联系方式.
Email: btp@math.nsc.ru
俄罗斯联邦, Novosibirsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016