On Wiener’s Theorem for functions periodic at infinity
- Autores: Strukova I.I.1
-
Afiliações:
- Voronezh State University
- Edição: Volume 57, Nº 1 (2016)
- Páginas: 145-154
- Seção: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/170338
- DOI: https://doi.org/10.1134/S0037446616010146
- ID: 170338
Citar
Resumo
We consider the functions periodic at infinity with values in a complex Banach space. The notions are introduced of the canonical and generalized Fourier series of a function periodic at infinity. We prove an analog of Wiener’s Theorem on absolutely convergent Fourier series for functions periodic at infinity whose Fourier series are summable with weight. The two criteria are given: for the function periodic at infinity to be the sum of a purely periodic function and a function vanishing at infinity and for a function to be periodic at infinity. The results of the article base on substantially use on spectral theory of isometric representations.
Sobre autores
I. Strukova
Voronezh State University
Autor responsável pela correspondência
Email: irina.k.post@yandex.ru
Rússia, Voronezh
Arquivos suplementares
