Technological Possibilities of Increasing the Quality and Decreasing the Cost of the Products Operating under High Loads at the Stage of Metallurgical Treatment


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of modification by ultradispersed materials on the structure and physicomechanical properties of alloys is considered. Nanostructured boron nitride and aluminum hydroxide monohydrate (boehmite) are chosen as modifying additions to study their influence on the structure formation in a zinc–aluminum–copper antifriction alloy. Scanning electron microscopy and electron-probe microanalysis are used to identify high-hardness phases in the alloy structure. Modifying particles are found to affect the hardness of the alloy, which increases significantly with the number of particles. The strength of the alloy depends on both the number and the size of introduced particles, and powders with small grain sizes are more effective to increase the strength of the alloy. Moreover, silicon carbide is shown to exert a stronger effect on the strength of silumins than alumina does.

About the authors

L. V. Sudnik

OKhP Research Institute of Pulsed Processes with Pilot Production

Author for correspondence.
Email: lsudnik@tut.by
Belarus, Minsk

F. I. Rudnitskii

Belarussian National Technical University

Email: lsudnik@tut.by
Belarus, Minsk

K. F. Rudnitskii

OKhP Research Institute of Pulsed Processes with Pilot Production

Email: lsudnik@tut.by
Belarus, Minsk

Yu. A. Nikolaichik

Belarussian National Technical University

Email: lsudnik@tut.by
Belarus, Minsk

A. L. Galinovskii

Bauman Moscow State Technical University

Email: lsudnik@tut.by
Russian Federation, Moscow

V. A. Moiseev

Bauman Moscow State Technical University

Email: lsudnik@tut.by
Russian Federation, Moscow


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies