Vibrational spectroscopy studies of structural changes in lignin under microwave irradiation


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Structural changes that occur in lignin surface-modified with nickel nanoparticles during microwave- assisted dry reforming (DR) are studied via vibrational spectroscopy. IR spectroscopy reveals that the nickel deposition has a considerable effect on the structural characteristics of lignin. It is found that nickel deposition from an acetate salt substantially reduces the intensity of absorption bands at 1700 cm−1. This finding suggests that Ni(2+) interacts mostly with formate groups, which are subsequently oxidized to carboxylate groups. It is shown that with the deposition of metallic nickel particles from a colloidal nickel solution in toluene prepared via metal vapor synthesis, the nickel particles do not interact with the surface functional groups of the lignin. Deep conversion of an organic mass of lignin by DR to form synthesis gas reduces the intensity of the absorption bands of the identified functional groups and raises the intensity of the absorption bands of the aromatic rings. Raman spectroscopy shows that during lignin conversion, the aromatic rings condense partially to form amorphized graphite. In operando studies reveal that the DR of nickel-modified lignin heated to 200–400°C results in the isolation of vanillic oxygenates that are probably intermediate products of reforming.

Sobre autores

O. Arapova

Topchiev Institute of Petrochemical Synthesis

Autor responsável pela correspondência
Email: arapova@ips.ac.ru
Rússia, Moscow, 119991

G. Bondarenko

Topchiev Institute of Petrochemical Synthesis

Email: arapova@ips.ac.ru
Rússia, Moscow, 119991

A. Chistyakov

Topchiev Institute of Petrochemical Synthesis

Email: arapova@ips.ac.ru
Rússia, Moscow, 119991

M. Tsodikov

Topchiev Institute of Petrochemical Synthesis

Email: arapova@ips.ac.ru
Rússia, Moscow, 119991


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies