Relationship between the Macroscopic and Quantum Characteristics of Dynamic Viscosity for Hydrocarbons upon the Compensation Effect


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An approach that allows the calculation of dynamic viscosity for liquid hydrocarbons from quantum (ionization energies) and molecular (Wiener topological indices) parameters is proposed. A physical relationship is revealed between ionization and the energies of viscous flow activation. This relationship is due to the contribution from the dispersion component of Van der Waals forces to intermolecular interaction. A two-parameter dependence of the energy of viscous flow activation, energy of ionization, and Wiener topological indices is obtained. The dynamic viscosities of liquid hydrocarbons can be calculated from the kinetic compensation effect of dynamic viscosity, which indicates a relationship between the energy of activation and the Arrhenius pre-exponental factor of the Frenkel–Eyring hole model. Calculation results are confirmed through statistical processing of the experimental data.

About the authors

M. Yu. Dolomatov

Ufa State Petroleum Technological University; Bashkir State University

Author for correspondence.
Email: mdolomatov@bk.ru
Russian Federation, Ufa, 450000; Ufa, 450076

E. A. Kovaleva

Ufa State Petroleum Technological University

Email: mdolomatov@bk.ru
Russian Federation, Ufa, 450000

D. A. Khamidullina

Ufa State Petroleum Technological University

Email: mdolomatov@bk.ru
Russian Federation, Ufa, 450000


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies