Optimization of Photooxidative Removal of Phenazopyridine from Water


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The photooxidative removal of analgesic pharmaceutical compound phenazopyridine (PhP) from aqueous solutions by UV/H2O2 system with a re-circulated photoreactor was investigated. Response surface methodology (RSM) was employed to optimize the effect of operational parameters on the photooxidative removal efficiency. The investigated variables were: the initial PhP and H2O2 concentrations, irradiation time, volume of solution and pH. The analysis of variance (ANOVA) of quadratic model demonstrated that the described model was highly significant. The predicted values of the photooxidative removal efficiency were found to be in a fair agreement with experimental values (R2 = 0.9832, adjusted R2 = 0.9716). The model predicted that the optimal reaction conditions for a maximum removal of PhP (>98%) were: initial PhP concentration less than 23 mg L–1, initial concentration of H2O2 higher than 470 mg L–1, solution volume less than 500 mL, pH close to 2 and irradiation time longer than 6 min.

Об авторах

Soudabeh Saeid

Department of Chemistry, Tabriz Branch; Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre

Email: behnajady@iaut.ac.ir
Иран, Tabriz; Abo/Turku

Mohammad Behnajady

Department of Chemistry, Tabriz Branch

Автор, ответственный за переписку.
Email: behnajady@iaut.ac.ir
Иран, Tabriz

Pasi Tolvanen

Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre

Email: behnajady@iaut.ac.ir
Финляндия, Abo/Turku

Tapio Salmi

Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre

Email: behnajady@iaut.ac.ir
Финляндия, Abo/Turku

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).