Study on Cesium Adsorption/Desorption Behavior of Porous Nickel


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A simplified two-dimensional mode of is established for the performance, characteristics and transportation behavior in cesium adsorption/desorption process. Subsequently the cesium absorption/ desorption ability of porous nickel were investigated by batch experiment on the condition that the pressure is lower than 10 Pa in self-made quarz vacuum device containing porous nickel with the appropriate structural features and parameters simulated above. The experiment results indicate that about 95% of cesium can be desorbed quickly and effectively with a stable process from the porous nickel show that the simulation model and the analysis method are correct and feasible which can be used as a basis for further study. According to the detailed simulation result, model reveal the considered porous nickel could be used for feasibility of cesium adsorption/desorption, which is fully meeting the application need of both higher storage capacity and stable desorption efficiency in lower pressure ambient condition.

About the authors

Weijie Hu

State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics; University of Chinese Academy of Sciences

Author for correspondence.
Email: huweijie@opt.ac.cn
China, Xi’an, 710119; Beijing, 100049

Haojing Wang

State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics

Email: huweijie@opt.ac.cn
China, Xi’an, 710119

Bin Guo

State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics; University of Chinese Academy of Sciences

Email: huweijie@opt.ac.cn
China, Xi’an, 710119; Beijing, 100049

Wenlong Li

State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics; University of Chinese Academy of Sciences

Email: huweijie@opt.ac.cn
China, Xi’an, 710119; Beijing, 100049

Qianqian Zhou

State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics

Email: huweijie@opt.ac.cn
China, Xi’an, 710119


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies