Changes in the Individual and Group Composition of Polyphenols in Leaves of Lonicera caerulea subsp. altaica and Spiraea chamaedryfolia as Related to the Chemical Elements Content in Soil and Plants on the Ultra-Alkaline Parent Rock Material

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract

—A comparative analysis of the main classes of biologically active polyphenols in extracts from the leaves of the medicinal species Spiraea chamaedryfolia L. (Rosaceae) and Lonicera caerulea L. (Caprifoliaceae) was performed. The features related to the macro- and trace elements’ content in soil and phytomass in coenopopulations of the Mountain Altai at the site with sporadic occurrence of serpentinites were studied. In the S. chamaedryfolia leaves high performance liquid chromatography identified 16 polyphenolic compounds. These polyphenols were attributed to different classes, namely phenol-carboxylic acids (3), flavonols (10), flavons (2) and one flavanon. As for the L. caerulea leaves, the analysis confirmed their polyphenolic composition, measured earlier, i.e. the presence of hydroxycinnamic acids, flavonols and flavons; but additionally, one more compound, identified as flavanone, was found. The study revealed species-specific shifts in plant secondary metabolism in response to specific edaphic properties and the level of macro- and trace elements accumulation in the leaves of plants, growing in the area with a natural geochemical anomaly.

作者简介

I. Boyarskykh

Central Siberian Botanical Garden SB RAS

编辑信件的主要联系方式.
Email: irina_2302@mail.ru
Russia, Novosibirsk

V. Kostikova

Central Siberian Botanical Garden SB RAS

Email: irina_2302@mail.ru
Russia, Novosibirsk

参考

  1. Brunetti C., Fini A., Sebastiani F., Gori A., Tattini M. 2018. Modulation of phytohormone signaling: A primary function of flavonoids in plant–environment interactions. – Front. Pl. Sci. 9: 1042. https://doi.org/10.3389/fpls.2018.01042
  2. Bautista I., Boscaiu M., Lidón A. Llinares J.V., Lull C., Donat M.P., Mayoral O., Vicente O. 2016. Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. – Acta Physiol. Plant. 38(1): 9. https://doi.org/10.1007/s11738-015-2025-2
  3. Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. – Pol. J. Environ. Stud. 15(4): 523–530. http://www.pjoes.com/pdf-87899-21758?filename=Phenolic%20Compounds%20and.pdf
  4. Kumarathilaka P., Dissanayake C., Vithanage M. 2014. Geochemistry of serpentinite soils: A brief overview. – J. Geol. Soc. Sri Lanka. 16: 53–63. http://viduketha.nsf.gov.lk:8585/slsijn/JGSSL-VOL-16-2014/JGSSL-VOL-16-2014-53.pdf
  5. Marescotti P., Comodi P., Crispini L., Gigli L., Zucchini A., Fornasaro S. 2019. Potentially toxic elements in ultramafic soils: A study from metamorphic ophiolites of the Voltri Massif (Western Alps, Italy). – Minerals. 9(8): 502. https://doi.org/10.3390/min9080502
  6. Кabata-Pendias A. 2010. Trace Elements in soils and plants. 4th ed. Boca Raton. 548 p. https://doi.org/10.1201/b10158
  7. Lovkova M.Ya., Rabinovich A.M., Ponomareva S.M., Buzuk G.N., Sokolova S.M. 2021. [Why do plants cure?]. Moscow. 256 p. (in Russian)
  8. Lovkova M.Ya., Sokolova S.M., Buzuk G.N., Bykhovskij V.Ya., Ponomareva S.M. 1999. Features of the elemental composition of medicinal plants synthesizing phenolic compounds. – Applied Biochemistry and Microbiology. 35(5): 514–524.
  9. Szymański M., Witkowska-Banaszczak E., Klak N., Marciniak K., Wołowiec T., Szymański A. 2014. Effects of trace Elements on polyphenoliccompounds in Millefoliiherba. – Pol. J. Environ. Stud. 23(2): 459–466. http://www.pjoes.com/pdf-89214-23073?filename=Effects%20of%20Trace%20Elements.pdf
  10. Boyarskih I.G., Syso A.I., Siromlya T.I. 2019. Variability of chemical elements and biologically active polyphenols in Lonicera caerulea subsp. altaica (Caprifoliaceae) plant organs along an altitudinal gradient. – Contemporary Problems of Ecology. 12(6): 594–606. https://doi.org/10.1134/S1995425519060039
  11. Krasteva I., Nedelcheva A., Pavlova D., Zdraveva P., Nikolov S., Mitov K. 2013. Influence of serpentine soils on the flavonoid content of Hypericum populations growing in Bulgaria. – Afr. J. Pharm. Pharmacol. 7(25): 1762–1765. https://doi.org/10.5897/AJPP2013.3634
  12. Sharma A., Lee H.-J. 2021. Lonicera caerulea: An updated account of its phytoconstituents and health-promoting activities. – Trends Food Sci. Technol. 107: 130–149. https://doi.org/10.1016/j.tifs.2020.08.013
  13. Boyarskih I.G., Vasiliev V.G., Kukushkina T.A. 2014. The content of flavonoids and hydroxycinnamic acids in Lonicera caerulea (Caprifoliaceae) from the populations of the Altai Mountains. – Rastitelnye Resursy. 50(1): 105–121. https://www.elibrary.ru/item.asp?id=21056295 (In Russian)
  14. Boyarskikh I.G., Syso A.I., Siromlya T.I. 2018. Mineral composition of Lonicera caerulea phytomass in contrasting geochemical environments. – Khimija Rastitel’nogo Syr’ja. 3: 129–138. https://doi.org/10.14258/jcprm.2018033740 (In Russian)
  15. Gołba M., Sokól-Lętowska A., Kucharska A.Z. 2020. Health properties and composition of honeysuckle berry Lonicera caerulea L. An update on recent studies. – Molecules. 25(3): 749. https://doi.org/10.3390/molecules25030749
  16. Jurikova T., Rop O., Mlcek J., Sochor J., Balla S., Szekeres L., Hegedusova A., Hubalek J., Adam V., Kizek R. 2012. Phenolic profile of edible honeysuckle berries (genus Lonicera) and their biological effects. – Molecules. 17(1): 61–79. https://doi.org/10.3390/molecules17010061
  17. Minayeva V.G. 1991. [Medicinal plants of Siberia]. Novosibirsk. 427 p. (in Russian).
  18. Kostikova V.A., Petrova N.V. 2021. Phytoconstituents and bioactivity of plants of the genus Spiraea L. (Rosaceae): A review. – Int. J. Mol. Sci. 22(20): 11163. https://doi.org/10.3390/ijms222011163
  19. Karpova E.A., Khramova E.P. 2019. Dinamics of pfenolic composition and content of representatives of the genus Spiraea L. under the conditions of transport and industrial pollution in Novosibirsk. – Chemistry for Sustainable Development. 27: 154–165. https://doi.org/10.15372/CSD2019123
  20. Kiss T., Cank K.B., Orbán-Gyapai O., Liktor-Bus E., Zomborszki Z.P., Rutkovska S., Pučka I., Németh A., Csupor D. 2017. Phytochemical and pharmacological investigation of Spiraea chamaedryfolia: A contribution to the chemotaxonomy of Spiraea genus. – BMC Res. Notes. 10(1): 762. https://doi.org/10.1186/s13104-017-3013-y
  21. Kiss T. 2017. Phytochemical, Pharmacological and Toxicological studies of alkaloid-and sesquiterpene lactone-containing medicinal plants. – Ph.D. Thesis, University of Szeged, Szeged, Hungary. 66 p. https://doktori.bibl.u-szeged.hu/id/eprint/4083/1/kiss-tivadar-PhD-Thesis.pdf
  22. Kostikova V.A., Filippova E.I., Vysochina G.I., Mazurkova N.A. 2016. [Antiviral activity of the Spiraea (Rosaceae) species growing in the Asian part of Russia]. – In: [Preservation of plant diversity in botanical gardens: traditions, present state, prospects. Proc. of the Int. conf. dedicated to the 70th anniversary of the Central Siberian Botanical Garden]. Novosibirsk. P. 156–157. http://conf.nsc.ru/files/conferences/csbg2016/343663/ЦСБС_СО_РАН_материалы.pdf (In Russian)
  23. Boyarskykh I.G., Siromlya T.I. 2022. Macro- and trace elements composition of the blue honeysuckle and elm-leaf spirea cenopopulations in the geochemically abnormal environment in the Mountain Altai. – Khimija Rastitel’nogo Syr’ja. 4: 211–220. (In Russian). https://doi.org/10.14258/jcprm.20220411294
  24. Kuminova A.V. 1960. [Vegetation cover of Altai]. Novosibirsk. 456 p. (in Russian)
  25. [State Geological Map of the Russian Federation. The 1 : 200 000. 2nd ed., Ser. Gorno-Altaisk. Sheet M-45-XIV (Ust-Koksa). Explanatory note] 2019. Moscow. 272 p. http://geo.mfvsegei.ru/200k/Zap/Zap_M-45-XIV.pdf (In Russian)
  26. Zaprometov M.N. 1974. [Fundamentals of biochemistry of phenolic compounds: textbook]. Moscow. 1974. (In Russian)
  27. Klyshev L.K., Bandyukova V.A., Alyukina L.S. 1978. [Plant flavonoids]. Alma-Ata. 220 p. (in Russian)
  28. Glantz S.A. 2012. Primer of Biostatistics. 7th ed. New York. 320 p. https://accessbiomedicalscience.mhmedical.com/book.aspx?bookid=665
  29. Arzhanova V.S., Elpatyevsky P.V. 1990. [Geochemistry of landscapes and technogenesis]. Moscow.196 p. (In Russian).
  30. Bityutskiy N.P. 2020. [Microelements of Higher Plants]. St. Petersburg. 368 p. (In Russian)
  31. Alexeeva-Popova N.V., Drozdova I.V. 2013. Micronutrient composition of the Polar Urals under contrasting geochemical conditions. – Russ. J. Ecol. 44(2): 100–107. https://doi.org/10.1134/S1067413613020033
  32. Skvortsov A.K., Kuklina A.G. 2002. [Blue honeysuckle: Botanical study and cultural perspectives in Central Russia]. Moscow. (In Russian)

补充文件

附件文件
动作
1. JATS XML
2.

下载 (53KB)
3.

下载 (47KB)
4.

下载 (86KB)

版权所有 © И.Г. Боярских, В.А. Костикова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».