Electronic Structure and Properties of the Ground State of Fe–Pt Based Alloys

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The properties of the ground state and the electronic structure of Fe2PtZ (Z = Ga, In, Ge, Si, Sn, Al) and FeRh1 – xPtx in the framework of the density functional theory implemented in the VASP software package alloys have been studied. Densities of electronic states for Fe2PtZ and FePt are obtained. It is shown that in Fe2PtIn and FePt high values of spin polarization are observed. It has been found that with increasing platinum concentration, the staggered antiferromagnetic spin configuration becomes unstable, and in the concentration range above 0.625, the antiferromagnetic configuration with layer-by-layer alternation of magnetic moment directions becomes advantageous. It was found that with a further increase in the platinum concentration, a ferromagnetic phase is observed.

作者简介

O. Pavlukhina

Chelyabinsk State University

Email: pavluhinaoo@mail.ru
Chelyabinsk, 454001 Russia

V. Sokolovskiy

Chelyabinsk State University

Email: pavluhinaoo@mail.ru
Chelyabinsk, 454001 Russia

V. Buchelnikov

Chelyabinsk State University

编辑信件的主要联系方式.
Email: pavluhinaoo@mail.ru
Chelyabinsk, 454001 Russia

参考

  1. Kim K.J., Lee S.J., Wiener T.A., Lynch D.W. // J. Appl. Phys. 2001. V. 89. № 1. P. 244. https://doi.org/10.1063/1.1331064
  2. Thiele J.-U., Maat S., Fullerton E.E. // Appl. Phys. Lett. 2003. V. 82. № 17. P. 2859. https://doi.org/10.1063/1.1571232
  3. Annaorazov M.P., Asatryan K.A., Myalikgulyev G. et al. // Cryogenics. 1992. V. 32. № 10. P. 867. https://doi.org/10.1016/0011-2275(92)90352-B
  4. Duplessis R.R., Stern R.A., Mac Laren J.M. // J. Appl. Phys. 2004. V. 95. № 11. P. 6589. https://doi.org/10.1063/1.1652422
  5. Coffey K.R., Parker M.A., Howard J.K. // IEEE Trans. Magn. 1995. V. 31. № 6. P. 2737. https://doi.org/10.1109/20.490108
  6. Weller D., Parker G., Mosendz O. et al. // J. Vac. Sci. Technol. 2016. V. 34. № 6. P. 060801. https://doi.org/10.1116/1.4965980
  7. Manekar M., Roy S. // J. Phys. D: Appl. Phys. 2011. V. 44. № 24. P. 242001. https://doi.org/10.1088/0022-3727/44/24/242001
  8. Kuncser V., Nicula R., Ponkratz U. et al. // J. Alloys Compound. 2005. V. 386. № 1. P. 8. https://doi.org/10.1016/j.jallcom.2004.04.139
  9. Chirkova A., Volegov A.S., Neznakhin D.S. et al. // Solid State Phenom. 2012. V. 190. P. 299. https://doi.org/10.4028/www.scientific.net/SSP.190.299
  10. Yuasa S., Miyajima H. // Nucl. Instrum. Methods Phys. Res. Sec. B. 1993. V. 76. № 1–4. P. 71. https://doi.org/10.1016/0168-583X(93)95136-S
  11. Takizawa K., Ono T., Miyajima H. // J. Magn. Magn. Mater. 2001. V. 226. P. 572. https://doi.org/10.1016/S0304-8853(00)01296-8
  12. Kouvel J.S., Hartelius C.C. // J. Appl. Phys. 1962. V. 33. № 3. P. 1343. https://doi.org/10.1063/1.1728721
  13. Ibarra M.R., Algarabel P.A. // Phys. Rev. B. 50 1994. V. 50. № 6. P. 4196. https://doi.org/10.1103/PhysRevB.50.4196
  14. Nikitin S.A., Myalikgulyev G., Tishin A.M. et al. // Phys. Lett. A. 1990. V. 148. № 6–7. P. 363. https://doi.org/10.1016/0375-9601(90)90819-A
  15. Chirkova A., Skokov K.P., Schultz L. et al. // Acta Mater. 2016. V. 106. P. 15. https://doi.org/10.1016/j.actamat.2015.11.054
  16. Aliev A.M., Batdalov A.B., Khanov L.N. et al. // Appl. Phys. Lett. 2016. V. 109. № 20. P. 202407. https://doi.org/10.1063/1.4968241
  17. Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D. // Mater. Today: Proc. 2017. V. 4. № 3. P. 4642. https://doi.org/10.1016/j.matpr.2017.04.044
  18. Павлухина О.О., Соколовский В.В. Бучельников В.Д., Загребин М.А.//ФТТ. 2018. Т. 60. № 6. С. 1122.
  19. Ostanin S., Razee S.S.A., Staunton J.B. et al. // J. Appl. Phys. 2003. V. 93. № 1. P. 453. https://doi.org/10.1063/1.1523147
  20. Pavlukhina O.O., Sokolovskiy V.V., Buchelnikov V.D., Zagrebin M.A. // J. Magn. Magn. Mater. 2019. V. 476. P. 325. https://doi.org/10.1016/j.jmmm.2018.12.095
  21. Pavlukhina O.O., Sokolovskiy V.V., Zagrebin M.A., Buchelnikov V.D. // J. Magn. Magn. Mater. 2019. V. 470. P. 69. https://doi.org/10.1016/j.jmmm.2017.11.052
  22. Hongzhi L., Zhiyong Z., Li M. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. № 22. P. 7121. https://doi.org/10.1088/0022-3727/40/22/039
  23. Mendonca A.A., Ghivelder L., Jurado J.F., Gomes A.M. // J. Magn. Magn. Mater. 2020. V. 531. Article No. 167965. https://doi.org/10.1016/j.jmmm.2021.167965
  24. Pavlukhina O.O., Buchelnikov V.D., Sokolovskiy V.V. // Mat. Sci. Forum. 2016. V. 845. P. 138. https://doi.org/10.4028/www.scientific.net/MSF.845.138
  25. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  26. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  27. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  28. Zotov N. // Intermetallics. 2008. V. 16. № 1. P. 113. https://doi.org/10.1016/j.intermet.2007.08.006
  29. Shirane G., Nathans R., Chen C.W. // Phys. Rev. 1964. V. 134. № 6A. P. A1547. https://doi.org/10.1103/PhysRev.134.A1547
  30. Belov M.P., Syzdykova A.B., Abrikosov I.A. // Phys. Rev. B. 2020. V. 101. № 13. P. 134303. https://doi.org/10.1103/PhysRevB.101.134303
  31. Zagrebin M.A., Sokolovskiy V.V., Buchelnikov V.D. // J. Phys. D: Appl. Phys. 2016.V. 49. № 35. Article No. 355004. https://doi.org/10.1088/0022-3727/49/35/355004

补充文件

附件文件
动作
1. JATS XML
2.

下载 (772KB)
3.

下载 (493KB)
4.

下载 (57KB)
5.

下载 (106KB)
6.

下载 (509KB)

版权所有 © О.О. Павлухина, В.В. Соколовский, В.Д. Бучельников, 2023

##common.cookie##