Fabrication of optical Yb: YAG ceramics by pressure slip casting method with subsequent vibro-impact effect
- Authors: Kozlova S.M.1, Lopukhin K.V.1, Balashov V.V.1, Listkov T.V.1, Efimov A.A.1
-
Affiliations:
- Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
- Issue: Vol 70, No 10 (2025)
- Pages: 997-1000
- Section: TO THE 70th ANNIVERSARY OF THE KOTELNIKOV IRE RAS
- URL: https://journals.rcsi.science/0033-8494/article/view/353268
- DOI: https://doi.org/10.7868/S3034590125100149
- ID: 353268
Cite item
Abstract
Yb: YAG ceramic samples with a thickness of 7 mm and more were manufactured using pressure slip casting method. The samples were obtained by solid-phase synthesis using commercially available Al2O3, Y2O3 and Yb2O3 powders. Optical transmission spectra were recorded. It was shown that pressing with vibro-impact effect as a method of additional compaction is more preferable than simple uniaxial pressing, since it yields ceramics with higher optical quality.
Keywords
About the authors
S. M. Kozlova
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
K. V. Lopukhin
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
V. V. Balashov
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
T. V. Listkov
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
A. A. Efimov
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Author for correspondence.
Email: offmrx@mail.ru
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
References
- Giesen A., Hügel H., Voss A. et al. // Appl. Phys. B. 1994. V. 58. № 5. P. 365.
- doi.org/10.1007/BF01081875
- Rutherford T.S., Tulloch W.M., Gustafson E.K. et al. // IEEE J. Quantum Electron. 2000. V. 36. № 2. P. 205.
- doi.org/10.1109/3.823467
- Yamamoto R.M., Parker J.M., Allen K.L. et al. // Proc. SPIE. 2007. V. 6552. P. 655205.
- doi.org/10.1117/12.720965
- Li J., Zhou J., Pan Y. et al. // J. Amer. Ceram. Soc. 2012. V. 95. № 3. P. 1029.
- doi.org/10.1111/j.1551-2916.2011.04915.x
- Zhang W., Pan Y., Zhou J. et al. // J. Amer. Ceram. Soc. 2009. V. 92. № 10. P. 2434.
- doi.org/10.1111/j.1551-2916.2009.03220.x
- Zhang W.X., Zhou J., Liu W.B. et al. // J. Alloys Compound. 2010. V. 506. № 2. P. 745.
- doi.org/10.1016/j.jallcom.2010.07.059
- Caslavsky J.L., Viechnicki D.J. // J. Mater. Sci. 1980. V. 15. № 7. P. 1709.
- doi.org/10.1007/BF00550589
- Ikesue A., Aung Y.L., Taira T. et al.//Annual Rev. Mater. Res. 2006. V. 36. № 1. P. 397.
- doi.org/10.1146/annurev.matsci.36.011205.152926
- Innerhofer E., Südmeyer T., Brunner F. et al. // Opt. Lett. 2003. V. 28. № 5. P. 367.
- doi.org/10.1364/OL.28.000367
- Latham W.P., Lobad A., Newell T.C. et al. // AIP Conf. Proc. 2010. V. 1278. № 1. P. 758.
- Boulesteix R., Goldstein A., Perrière C. et al. // J. Europ. Ceram. Soc. 2021. V. 41. № 3. P. 2085.
- doi.org/10.1016/j.jeurceramsoc.2020.11.003
- Xu Y., Mao X., Fan J. et al. // Ceram. Int. 2017. V. 43. № 12. P. 8839.
- doi.org/10.1016/j.ceramint.2017.04.017
- Sanghera J., Kim W., Villalobos G. et al. // Materials. 2012. V. 5. № 2. P. 258.
- doi.org/10.3390/ma5020258
Supplementary files

