Features of Phenomenological Bloch Equations sSolution for Determining the Longitudinal Relaxation Time Т1 in a Liquid Flow
- 作者: Davydov V.V.1, Gol’dberg A.A.1, Dudkin V.I.2, Davydov R.V.1,2,3
-
隶属关系:
- Peter the Great St. Peterburg Polytechnic University
- The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
- Alferov University
- 期: 卷 69, 编号 10 (2024)
- 页面: 1020-1030
- 栏目: ФИЗИЧЕСКИЕ ПРОЦЕССЫ В ЭЛЕКТРОННЫХ ПРИБОРАХ
- URL: https://journals.rcsi.science/0033-8494/article/view/282461
- DOI: https://doi.org/10.31857/S0033849424100122
- EDN: https://elibrary.ru/HPQLAU
- ID: 282461
如何引用文章
详细
The article considers the features of determining the longitudinal T1 and transverse T2 relaxation times in the designs of NMR relaxometers with a flow-through and stationary liquid medium. The advantages of using the modulation technique for recording the NMR signal for flow-through NMR flowmeters-relaxometers and small-sized NMR relaxometers for express control of condensed media in comparison with other methods are noted. It is experimentally proven that the relationship obtained from the Bloch equations using approximations for determining T1 based on the results of two measurements of the NMR signal amplitudes or resonance frequencies has a number of limitations in its application for monitoring the state of a flowing medium. Based on experimental data, a study was made of the relationship between the magnetic field modulation frequencies for determining T1 and it was proven that for a number of relationships between them it is impossible to determine the T1 value during measurements. In this case, the NMR signals from the flowing medium at these modulation frequencies are recorded, and the medium itself has relaxation times T1 and T2. The results we obtained allow us to eliminate the error in determining the state of the medium (whether it complies with the standard (absence of impurities in it) or not) using the measured values of relaxation times. This is extremely important a during conducting various experiments, especially using current flows, in which the use of other methods for solving this problem is difficult.
作者简介
V. Davydov
Peter the Great St. Peterburg Polytechnic University
编辑信件的主要联系方式.
Email: Davydov_vadim66@mail.ru
俄罗斯联邦, Polytechnicheskaya Str., 29, Saint-Petersburg, 195251
A. Gol’dberg
Peter the Great St. Peterburg Polytechnic University
Email: Davydov_vadim66@mail.ru
俄罗斯联邦, Polytechnicheskaya Str., 29, Saint-Petersburg, 195251
V. Dudkin
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Email: Davydov_vadim66@mail.ru
俄罗斯联邦, prosp. Bol’shevikov., 22, Saint-Petersburg, 193232
R. Davydov
Peter the Great St. Peterburg Polytechnic University; The Bonch-Bruevich Saint-Petersburg State University of Telecommunications; Alferov University
Email: Davydov_vadim66@mail.ru
俄罗斯联邦, Polytechnicheskaya Str., 29, Saint-Petersburg, 195251; prosp. Bol’shevikov., 22, Saint-Petersburg, 193232; Khlopina Str., 8, Build., 3, Saint-Petersburg, 194021
参考
- Давыдов В.В., Дудкин В.И., Карсеев А.Ю.//Письма в ЖТФ. 2015. Т. 41. № 7. С.103
- Жерновой А.И., Комлев А.А., Дьяченко С.В.//ЖТФ. 2016. Т. 86. № 2. С. 146.
- Gizatullin B., Gafurov M., Vakhin A. et al. // Energy and Fuels. 2019. V. 33. № 11. P. 10923.
- Marusina M.Y., Karaseva E.A. // Asian Pacific J. Cancer Prevention. 2018. V. 19. № 10. P. 2771.
- Марусина М.Я., Базаров Б.А., Галайдин П.А. и др.//Измерительная техника. 2014. №4. С.62.
- Gizatullin B., Gafurov M., Rodionov A. et al. // Energy and Fuels. 2018. V. 32. P. 11261.
- Марусина М.Я., Базаров Б.А., Галайдин П.А. и др. //Измерительная техника. 2014. №5. С.68.
- O'Neill K.T., Brancato L., Stanwix P.L. et al. // Chem. Engineer. Sci. 2019. V. 202. P. 222.
- Давыдов В.В.//Оптика и спектроскопия. 2016. Т. 121. № 1. С. 20.
- Deng F., Xiao L., Wang M. et. al. // Appl. Magnetic Resonance. 2016. V. 47. № 10. P. 1239.
- Kashaev R.S., Kien N.C., Tung T.V., Kozelkov O.V. // J. Appl. Spectroscopy. 2019. V. 86. № 5. P. 890.
- Sadovnikova M.A., Murzakhanov F.F., Mamin G.V., Gafurov M.R. // Energies. 2012. V. 15. № 17. P. 6204.
- Gizatullin B., Gafurov M., Murzakhanov M. et al. // Langmuir. 2021. V. 37. № 22. P. 6783.
- Жерновой А.И., Дьяченко С.В. // ЖТФ. 2015. Т. 85. № 4. С. 118.
- Davydov R., Davydov V., Myazin N., Dudkin V. // Energies. 2022. V. 15. № 5. P. 1748.
- Дьяченко С.В., Жерновой А.И., // ЖТФ. 2016. Т. 86. № 12. С. 78.
- Давыдов В.В., Величко Е.Н., Дудкин В.И., Карсеев А.Ю.//Метрология. 2014. №2. С.32.
- Кашаев Р.С., Козелкова В.О., Овсеенко Г.А. и др.// Измерительная техника. 2023. № 5. С. 52
- Deng F., Xiong C., Chen S. // Petroleum Exploration and Development. 2020. V. 47. P. 855.
- Eremina R., Gippius A., Gafurov M. // Appl. Magnetic Resonance. 2023. V. 54. № 4-5. P. 435.
- Giulotto L., Lanzi G., Tosca L. // J. Chem. Phys. 1956. V. 24. № 3. P. 632.
- Давыдов В.В., Дудкин В.И., Карсеев А.Ю.//ПТЭ. 2015. № 6. С. 83.
- Давыдов В.В., Дудкин В.И., Николаев Д.И. и др. // РЭ. 2021. Т. 66. № 10. С. 1017.
- Zargar M., Johns M.L., Aljindan L.M. et. al. // SPE Production & Operation, 2021. V. 36. № 2. P. 423.
- Fouilloux P., Assifaoui A., Rachocki A. et. al. // Int. J. Biological Macromolecules. 2023. V. 253. Pt. 1. Article No. 126307.
- Cao G., Gao S., Xiong B. // Sci. Reports. 2023. V. 13. № 1. P. 4558.
- Leshe A. Nuclear Induction. Berlin: Verlag Wissenschaften, 1963.
- Abragam A. The Рrinciples of Nuclear Magnetism. Oxford: Qxford Clarendon Press, 1961.
- Jacobsohn B.A., Wangsness R.K. // Phys. Rev. 1948. V. 73. № 9. P. 942.
- Chiarotti G., Cristiani G., Giulotto L., Lanzi G. // II Nuovo Cimento. 1954. V. 12. № 4. P. 519.
补充文件
