Physical emulation of controlled multipath radio propagation environment

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents a new method for physical modeling of a multipath radio propagation environment with desired properties using a set of software-defined radio units. Using this method the authors conduct an experimental study on the convergence rate of a received multipath radio signal to a Gaussian random process as the number of multipath channel taps rises. The experiments showed that seven or less multipath taps are insufficient for accepting the statistical hypothesis of a Gaussian random process for the received signal, which revises previous theoretical studies. For the case of equal variances of all multipath taps the experiments verified the independence of the signal correlation function on the number of the taps. The obtained experimental data are fitted well to the classical theoretical models of multipath channels.

About the authors

A. I. Sulimov

Kazan Federal University

Author for correspondence.
Email: asulimo@gmail.com
Russian Federation, 18th Kremlyovskaya Str., Kazan, 420018

A. A. Galiev

Kazan Federal University

Email: asulimo@gmail.com
Russian Federation, 18th Kremlyovskaya Str., Kazan, 420018

R. R. Latypov

Kazan Federal University

Email: asulimo@gmail.com
Russian Federation, 18th Kremlyovskaya Str., Kazan, 420018

O. N. Sherstyukov

Kazan Federal University

Email: asulimo@gmail.com
Russian Federation, 18th Kremlyovskaya Str., Kazan, 420018

A. D. Smolyakov

Kazan Federal University

Email: asulimo@gmail.com
Russian Federation, 18th Kremlyovskaya Str., Kazan, 420018

R. F. Khaliullin

Kazan Federal University

Email: asulimo@gmail.com
Russian Federation, 18th Kremlyovskaya Str., Kazan, 420018

A. V. Karpov

Kazan Federal University

Email: asulimo@gmail.com
Russian Federation, 18th Kremlyovskaya Str., Kazan, 420018

References

  1. Saunders S.R., Argo-Zavala A. Antennas and Propagation for Wireless Communication Systems. N.Y.: Wiley, 2007.
  2. Кеннеди Р. Каналы связи с замираниями и рассеянием. М.: Сов. радио, 1973.
  3. Пономарев Г.А., Куликов А. М., Тельпуховский Е. Д. Распространение УКВ в городе. Томск: МП “Раско”, 1991.
  4. Parsons J. D. The Mobile Radio Propagation Channel. N.Y.: John Wiley & Sons, 2000.
  5. Patzold M. Mobile Fading Channels. N.Y.: John Wiley & Sons, 2002.
  6. Proakis J.G., Salehi M. Digital Communications. McGraw-Hill, 2008.
  7. Molisch A. F. Wireless Communications. Wiley, 2011.
  8. Blaunstein N. // J. Communications and Networks. 2000. V. 2. № 4. P. 305.
  9. Blaunstein N., Toeltsch M., Laurila J. et al. // IEEE Trans. 2006. V. AP-54. № 10. P. 2902.
  10. Zhang J., Duong T. Q., Marshall A., Woods R. // IEEE Access. 2016. V. 4. P. 614.
  11. Zeng K. // IEEE Commun. Mag. 2015. V. 53. № 6. P. 33.
  12. Hyadi A., Rezki Z., Alouini M.-S. // IEEE Access. 2016. V. 4. P. 6121.
  13. Zhang J., He B., Duong T. Q., Woods R. // IEEE Commun. Lett. 2017. V. 21. № 4. P. 961.
  14. Wallace J.W., Sharma R. K. // IEEE Trans. 2010. V. IFS-5. № 3. P. 381.
  15. Peng Y., Wang P., Xiang W., Li Y. // IEEE Trans. 2017. V. WC-16. № 8. P. 5176.
  16. Рытов С.М., Кравцов Ю. М., Татарский В. И. Введение в статистическую радиофизику. Ч. 2. Случайные поля. М.: Наука, 1978.
  17. Liu H., Yang J., Wang Y. et al. // IEEE Trans. 2014. V. МС-13. № 12. P. 2820.
  18. Bai L., Zhu L., Liu J. et al. // J. Commun. Inform. Networks. 2020. V. 5. № 3. P. 237.
  19. Premnath S.N., Jana S., Croft J. et al. // IEEE Trans. Mob. Comput. 2013. V. 12. № 5. P. 917.
  20. Upadhyay R., Singh S., Trivedi V., Soni A. // Proc. Int. Conf. Adv. Computation and Telecomm. Bhopal. 28–29 Dec. N.Y.: IEEE, 2018. № 8933725.
  21. Gohring M., Schmitz R. // Proc. 2nd World Forum on Internet of Things. Milan. 14–16 December. N.Y.: IEEE, 2015. № 7389145.
  22. Topal O.A., Kurt G. K., Ozbek B. // IEEE Wireless Commun. Lett. 2017. V. 6. № 6. P. 766.
  23. Huth C., Guillaume R., Strohm T., Duplys P. // Computer Networks. 2016. V. 109(1). P. 84.
  24. Leung-Yan-Cheong S., Hellman M. // IEEE Trans. 1978. V. IT-24. № 4. P. 451.
  25. Gopala P.K., Lai L., Gamal El H. // IEEE Trans. 2008. V. IT-54. № 10. P. 4687.
  26. Edman M., Kiayias A., Yener B. // Proc. 4th Eur. Worksh. on System Security. Salzburg. 10 Apr. N.Y.: ACM, 2011. № 8.
  27. Pasolini G., Dardari D. // IEEE Trans. 2015. V. WC-14. № 6. P. 3429.
  28. Edman M., Kiayias A., Tang Q., Yener B. // IEEE Trans. 2016. V. IFS-11. № 8. P. 1796.
  29. He B., Zhou X., Swindlehurst A.L. // IEEE Trans. 2016. V. WC-15. № 10. P. 6913.
  30. Jin H., Huang K., Jin L. et al. // Proc. 4th Int. Conf. on Computer and Comms. Chengdu. 07–10 December. N.Y.: IEEE, 2018. P. 226.
  31. Ji Z., Zhang Y., He Z. et al. // IEEE Wireless Commun. Lett. 2020. V. 9. № 5. P. 693.
  32. Rottenberg F., Nguyen T.-H., Dricot J.-M. et al. // IEEE Trans. 2021. V. TCOM-69. № 3. P. 1868.
  33. Zhu R., Shu T., Fu H. // Wireless Networks. 2021. V. 27. P. 4853.
  34. Rafiq G., Patzold M. // Proc. 20th Int. Symp. Personal, Indoor and Mobile Radio Comms. Tokyo. 13–16 Sept. N.Y.: IEEE, 2009. P. 1103.
  35. Тихонов В. И. Нелинейные преобразования случайных процессов. М.: Радио и связь, 1986.
  36. Rec. ITU-R P. 1407–6. Int. Telecomm. Union, 2017.
  37. Fleury B.H., Tschudin M., Heddergott R. et al. // IEEE J. Sel. Areas Commun. 1999. V. 17. № 3. P. 434.
  38. Chong C.-C., Tan C.-M., Laurenson D. I. et al. // IEEE Trans. 2005. V. AP-4. № 4. P. 1539.
  39. Salmi J., Richter A., Koivunen V. // IEEE Trans. 2009. V. SP-57(4). P. 1538.
  40. Jost T., Wang W., Fiebig U.-C., Perez-Fontan F. // IEEE Trans. 2012. V. AP-60. № 10. P. 4875.
  41. Ghoraishi M., Takada J., Imai T. // IEEE Trans. 2006. V. AP-54. № 11. P. 3473.
  42. Goel K., Adam N. // IEEE Trans. 2012. V. GRS-50. № 6. P. 2355.
  43. Seijo O., Val I., Lopez-Fernandez J.A. // IEEE Access. 2020. V. 8. P. 175576.
  44. Graur O., Islam N., Henkel W. // Proc. Globecom Workshops. Washington. 04–08 Dec. N.Y.: IEEE, 2016. № 7849013.
  45. Левин Б. Р. Теоретические основы статистической радиотехники. М.: Сов. радио, 1969. Кн. 1.
  46. Suzuki H. // IEEE Trans. 1977. V. TCOM-25. № 7. P. 673.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».