Related dynamics of magnetic vortexes in five-layer spintransfer nanooscillator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of spin-polarized current and the number of magnetic layers on the coupled dynamics of vortices in small-diameter spin-transfer nanooscillators has been studied. Using the software package for micromagnetic modeling SpinPM, the dependence of the frequency on the current magnitude of the currents at which a stationary mode of coupled oscillations of three vortices is observed is found. For the case of three identical magnetic layers, the possibility of implementing different scenarios of coupled vortex dynamics is shown. It was found that numerical calculations for the case of three magnetic layers yield frequencies of stationary coupled oscillations that are lower than those predicted by theory. Built on effective equations for the coordinates of the vortex center.

Full Text

Restricted Access

About the authors

E. G. Ekomasov

Ufa University of Science and Technology

Email: georgij.antonow@yandex.ru
Russian Federation, st. Zaki Validi, 32, Ufa, 450076

D. F. Neradovsky

Tyumen State University

Email: georgij.antonow@yandex.ru
Russian Federation, st. Volodarskogo, 6, Tyumen, 625003

G. I. Antonov

Ufa University of Science and Technology

Author for correspondence.
Email: georgij.antonow@yandex.ru
Russian Federation, st. Zaki Validi, 32, Ufa, 450076

V. V. Filippova

Ufa University of Science and Technology

Email: georgij.antonow@yandex.ru
Russian Federation, st. Zaki Validi, 32, Ufa, 450076

References

  1. Звездин К.А., Екомасов Е.Г. // ФММ. 2022. Т. 123. № 3. С. 219.
  2. Wu J., Carlton D., Park J., Meng Y. // Nature Phys. 2011. V. 7. P. 303. doi: 10.1038/nphys1891.
  3. Mironov V.L., Gribkov B.A., Fraerman A.A. et al. // J. Magn. Magn. Mater. 2007. V. 312. P. 153. doi: 10.1016/j.jmmm.2006.09.032.
  4. Guslienko K. Yu., Han X.F., Keavney D.J. et al. // Phys. Rev. Lett. 2006. V. 96. № 6. P. 067205. doi: 10.1103/PhysRevLett.96.067205.
  5. Bohlens S., Krüger B., Drews A., Bolte M. // Appl. Phys. Lett. 2008. V. 93. № 14. P. 142508. doi: 10.1063/1.2998584 6.
  6. Nakano K., Chiba D., Ohshima N. et al. // Appl. Phys. Lett. 2011. V. 99. № 26. P. 262505. doi: 10.1063/1.3673303 56.
  7. Grollier J., Querlioz D., Camsari K.Y. et al. // Neuromorphic Spintronics. Nat Electron. 2020. V. 3. P. 360. doi: 10.1038/s41928-019-0360-9.
  8. Звездин А.К., Хвальковский А.В., Звездин К.А. // Успехи физ. наук. 2008. Т. 178. № 4. C. 436. doi: 10.1070/PU2008v051n04ABEH006508.
  9. Dussaux A., Georges B., Grollier J. et al. // Nature Commun. 2010. V. 1. P. 8. doi: 10.1038/ncomms1006
  10. Khvalkovskiy A.V., Grollier J., Dussaux A. et al. // Phys. Rev. B. 2009. V. 80. № 14. P. 140401. doi: 10.1103/PhysRevB.80.140401.
  11. Gaididei Y., Kravchuk V., Sheka D. // Int. J. Quantum Chemistry. 2010. V. 110. P. 8397. doi: 10.1002/qua.22253.
  12. Ivanov B.A., Zaspel E. // Phys. Rev. Lett. 2007. V. 99. № 24. P. 247208. doi: 10.1103/PhysRevLett.99.247208.
  13. Усов Н.А., Песчаный С.Е. // ФММ. 1994. Т. 78. № 6. С. 13.
  14. Guslienko K. Yu., Buchanan K.S., Bader S.D., Novosad V. // Appl. Phys. Lett. 2005. V. 86. № 22. P. 223112. doi: 10.1063/1.1929078.
  15. Locatelli N., Naletov V.V., Grollier J. et al. // Appl. Phys. Lett. 2011. V. 98. № 6. P. 062501. doi: 10.1063/1.3553771.
  16. Cherepov S.S., Koop B.C., Galkin A.Y. et al. // Phys. Rev. Lett. 2012. V. 109. № 9. P. 097204. doi: 10.1103/PhysRevLett.109.139902.
  17. Locatelli N., Ekomasov A.E., Khvalkovskiy A.V. et al. // Appl. Phys. Lett. 2013. V. 102. № 6. P. 062401. doi: 10.1063/1.4790841
  18. Sluka V., Kakay A., Deac A.M. et al. // Nat. Commun. 2015. V. 6. P. 6409. doi: 10.1038/ncomms7409.
  19. Locatelli N., Lebrun R., Naletov V. et al. // IEEE Trans. 2015. V. MAG-51. № 8. Article No. 4300206. doi: 10.1109/TMAG.2015.2414903.
  20. Holmgren E., Bondarenko A., Ivanov B.A., Korenivski V. // Phys. Rev. B. 2018. V. 97. № 9. P. 094406. doi: 10.1103/Phys. rev.B.97.094406.
  21. Anam Hanif, Arbab Abdur Rahim, Husnul Maab // Physica B: Cond. Matt. 2023. V. 668. ArticleNo. 415203. doi: 10.1016/j.physb.2023.415203.
  22. Екомасов А.Е., Степанов С.В., Звездин К.А., Екомасов Е.Г.//ФММ. 2017. Т. 118. № 4. С. 345. doi: 10.7868/S0015323017020024
  23. Степанов С.В., Екомасов А.Е., Звездин К.А., Екомасов Е.Г.//ФТТ. 2018. Т. 60. № 6. С. 1045.
  24. doi: 10.21883/FTT.2018.06.45974.22M
  25. Ekomasov A.E., Stepanov S.V., Zvezdin K.A., Ekomasov E.G. // J. Magn. Magn.Mater. 2019. V. 471. P. 513. DOI: org/10.1016/j.jmmm.2018.09.077.
  26. Екомасов Е.Г., Степанов С.В., Назаров и др.// Письма в ЖТФ. 2021. Т. 47. № 17. С. 26.
  27. Stepanov S.V., Nazarov V.N., Zvezdin K.A., Ekomasov E.G. // J. Magn. Magn. Mater. 2022. V. 562. P. 169758. doi: 10.1016/j.jmmm.2022.169758.
  28. Lacoste B., Marins de Castro M., Devolder T. et al. // Phys. Rev. B. 2014. V. 90. № 22. P. 224404. doi: 10.1103/PhysRevB.90.224404.
  29. Zaspel C.E., Galkina E.G., Ivanov B.A. // Phys. Rev. Appl. 2019. V. 12. № 4. P. 044019. doi: 10.1103/PhysRevApplied.12.044019.
  30. Chun-Yeol You // J. Magnetics. 2012. V. 17. P. 73. doi: 10.4283/jmag.2012.17.2.073.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of a multilayer columnar nanostructure.

Download (8KB)
3. Fig. 2. Trajectories of the vortex core motion in the upper layer, obtained for the 15/15/15 case at a current of 28.27 mA for the time intervals: 0…25 (a), 25…50 (b), 50…75 (c), 75…100 ns (d); the time moments are indicated: 0 (1), 25 (2), 50 (3), 75 (4) and 100 ns (5).

Download (115KB)
4. Fig. 3. Trajectories of the vortex core motion in the middle layer, obtained for the case of 15/15/15 at a current of 28.27 mA for the time intervals: 0…25 (a), 25…50 (b), 50…75 (c), 75…100 ns (d); the time moments are indicated: 0 (1), 25 (2), 50 (3), 75 (4) and 100 ns (5).

Download (114KB)
5. Fig. 4. Trajectories of the vortex core motion in the lower layer, obtained for the 15/15/15 case at a current of 28.27 mA for the time intervals: 0…25 (a), 25…50 (b), 50…75 (c), 75…100 ns (d); the time moments are indicated: 0 (1), 25 (2), 50 (3), 75 (4) and 100 ns (5).

Download (109KB)
6. Fig. 5. Dependences of the frequency of stationary oscillations of vortices on the current value for a three-layer structure: three magnetic vortices move with the same frequency (1), two magnetic vortices move with the same frequency (2), the vortex escapes beyond the edge in the third magnetic layer (3); for a two-layer structure: the oscillation frequency for the first (4) and second (5) layers.

Download (10KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».