Radio Absorber with High Angular Stability of Resonance Frequency Based on Artificial Magnetic Conductor and Resistive Film

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A structure of a radio absorber (RA) with a high stability of resonance frequency based on a resistive film with a sheet resistance of 120 Ω/sq and an artificial magnetic conductor in a pair of capacitive gratings on a dielectric layer with a high permittivity (epsilon_1 >>1) metallized on the opposite side is proposed. The results of numerical calculations of the frequency–angular dependences of the RA reflection coefficient confirm preliminary estimates obtained from analytical expressions. For example, at epsilon_1 = 20  , the shift of the resonance frequency is no greater than 2% at angles of incidence of phi=0^o...60^o , and the bandwidth-to-thickness ratio is 4.29 at phi=0.

About the authors

Yu. N. Kazantsev

Kotelnikov Institute of Radioengineering and Electronics (Fryazino Branch), Russian Academy of Sciences

Email: yukazantsev@mail.ru
Fryazino, Moscow oblast, 141190 Russia;

G. A. Kraftmakher

Kotelnikov Institute of Radioengineering and Electronics (Fryazino Branch), Russian Academy of Sciences

Email: yukazantsev@mail.ru
Fryazino, Moscow oblast, 141190 Russia

V. P. Maltsev

Kotelnikov Institute of Radioengineering and Electronics (Fryazino Branch), Russian Academy of Sciences

Email: yukazantsev@mail.ru
Fryazino, Moscow oblast, 141190 Russia

V. S. Solosin

Kotelnikov Institute of Radioengineering and Electronics (Fryazino Branch), Russian Academy of Sciences; Institute of Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Author for correspondence.
Email: yukazantsev@mail.ru
Fryazino, Moscow oblast, 141190 Russia; Moscow, 125412 Russia

References

  1. Sievenpiper D., Zhang L., Broas R.F.J. et al. // IEEE Trans. 1999. V. MTT-47. № 11. P. 2059.
  2. Broas R.F.J., Sievenpiper D.F., Yablonovitch E. // IEEE Trans. 2001. V. MTT-49. № 7. P. 1262.
  3. Broas R.F.J., Sievenpiper D.F., Yablonovitch E. // IEEE Trans. 2005. V. AP-53. № 4. P. 1377.
  4. Clavijo S., Diaz R.E., McKinzie W.E. // IEEE Trans. 2003. V. AP-51. № 10. P. 2678.
  5. Feresidis A.P., Goussetis G., Shenhong Wang, Vardaxoglou J.C. // IEEE Trans. 2003. V. AP-51. № 1. P. 209.
  6. Ying Zhang, von Hagen J., Younis M. et al. // IEEE Trans. 2003. V. AP-51. № 10. P. 2704.
  7. Fan Yang, Rahmat-Samii Y. // IEEE Trans. 2003. V. AP-51. № 10. P. 2691.
  8. Казанцев Ю.Н., Аплеталин В.Н. // РЭ. 2007. Т. 52. № 4. С. 415.
  9. Engheta N. // IEEE Antennas and Propagation Society Intern. Symp. June 2002. V. 2. P. 392.
  10. Simms S., Fusco V. // Electron. Lett. 2005. V. 41. № 24. P. 1311.
  11. Казанцев Ю.Н., Крафтмахер Г.А., Мальцев В.П., Солосин В.С. // РЭ. 2022. Т. 67. № 4. С. 339.
  12. Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (120KB)
3.

Download (43KB)
4.

Download (117KB)
5.

Download (116KB)
6.

Download (118KB)

Copyright (c) 2023 Ю.Н. Казанцев, Г.А. Крафтмахер, В.П. Мальцев, В.С. Солосин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies