


Vol 59, No 2 (2016)
- Year: 2016
- Articles: 10
- URL: https://journals.rcsi.science/0033-8443/issue/view/15145
Article
Spatial Structure of Large-Scale Plasma Density Perturbations HF-Induced in the Ionospheric F2 Region
Abstract
We consider the experimental results obtained by studying the large-scale structure of the HF-disturbed ionospheric region. The experiments were performed using the SURA heating facility. The disturbed ionospheric region was sounded by signals radiated by GPS navigation satellite beacons as well as by signals of low-orbit satellites (radio tomography). The results of the experiments show that large-scale plasma density perturbations induced at altitudes higher than the F2 layer maximum can contribute significantly to the measured variations of the total electron density and can, with a certain arrangement of the reception points, be measured by the GPS sounding method.



Localization of a Coherent Acoustic Source in a Shallow-Water Channel Using the Partially Calibrated Adaptive Antenna Array
Abstract
We consider the problem of determining the location of a coherent acoustic source in a shallowwater channel using a partially calibrated antenna array. To solve this problem, we develop a reduced-rank stable projection algorithm, which is the generalization of the RARE method to the case of signal reception under the conditions of incomplete information on the propagation medium. The results of experimental validation of the proposed approach, which show its efficiency under the conditions of an actual shallow-water area, are presented.



The Main Principles of Formation of the Transverse Modes in the Multilayered Waveguides of Surface Acoustic Waves
Abstract
We develop a self-consistent model allowing one to analyze the properties of the interdigital transducer of the surface acoustic waves as a symmetric five-layered waveguide on a piezoelectric substrate with three possible values of the phase velocity of the acoustic-wave propagation along the longitudinal axis of the system. The transcendental dispersion relation for describing the waves in such a system is derived and the method for its instructive graphic analysis is proposed. The condition under which only the fundamental transverse mode is excited in the waveguide is formulated. The method for calculating the normalized power and the transverse distribution of the field of the continuous-spectrum waves radiated from the considered waveguide is described. It is shown that the characteristic spatial scale of the longitudinal damping of the amplitude of this field at the waveguide center can be a qualitative estimate of the transverse-mode formation length. The efficiency of a new method for suppressing the higher-order transverse waveguide modes is demonstrated.



The Wave Processes in the Media Having Inelastic Hysteresis with Saturation of The Nonlinear Loss
Abstract
We study theoretically the nonlinear wave processes during excitation of a longitudinal harmonic wave in an unbounded medium and the rod resonator with inelastic hysteresis and saturation of the amplitude-dependent loss. The nonlinear-wave characteristics in such systems, namely, the amplitude-dependent loss, variation in the wave-propagation velocity, the resonant-frequency shift, and the higher-harmonic amplitudes are determined. The results of the theoretical and experimental studies of nonlinear effects in the rod resonator of annealed polycrystalline copper are compared. The effective parameters of the hysteretic nonlinearity of this metal are evaluated.



Influence of Diffraction Effects on the Result of Measuring the Absorption Coefficient of Ultrasound in Weakly Absorbing Liquids by the Pulse Method
Abstract
We consider the problem of the influence of diffraction effects on the result of measuring the absorption coefficient of ultrasound in weakly absorbing liquids by the pulse method. Diffraction attenuation of an ultrasonic signal in a measuring cell using solid-state delay lines is calculated. It is shown that the use of delay lines of the ultrasonic signal leads to a considerable distortion of the measured absorption coefficient in the low-frequency range from the true value and can either overestimate or underestimate the results.



The Electron-Optical System of a Gyrotron with an Operating Frequency of 263 GHz for Spectroscopic Research
Abstract
We describe specific features of modeling numerically the operation of magnetron-injection guns, which form high-quality helical electron beams in gyrotrons operated in the short-wave part of the millimeter-wave band (at a wavelength of 1 mm). As an example, we consider the gun of a gyrotron having an operating frequency of 263 GHz designed for spectroscopic research. It is shown that there are good reasons to perform calculations and optimization of the magnetroninjection un in two steps. At the first step, a simplest two-dimensional model can be used, which allows only for the influence of the field of the electrodes and the intrinsic space charge of the beam on the beam parameters. At the second, final stage one should allow for such factors as roughness of the emitting surface and thermal velocities of electrons. The electron distribution function in oscillatory velocities and the coefficient of electron reflection from the magnetic mirror should be calculated. It is demonstrated that the magnetron-injection gun, which is optimized by the method presented, is sufficiently universal and can be operated both at the first and second cyclotron-frequency harmonics. This opens up the possibility of developing gyrotrons for spectroscopy applications at frequencies of 263 and 526 GHz, respectively, which are required for biological and medical research.



Quasioptical Mach—Zehnder Interferometer with a Reflective Diffraction Grating Acting as a Power Splitter
Abstract
We present a prototype of a quasioptical Mach—Zehnder interferometer with wave beam splitters in the form of reflective diffraction gratings. Characteristics of the diplexer are studied experimentally at frequencies of about 140 GHz. The measurement results are close to the calculated ones.



On Dispersive Properties of the Photon-Density Waves in an Anisotropic Scattering Medium
Abstract
We study frequency dependences of the phase and group velocities of the photon-density waves in an anisotropic scattering turbid medium of the sea water type. It is shown that such a medium has an anomalous dispersion in relation to these waves, and their phase and group velocities are functions of the distance to a radiation source. The possibility of time focusing of the photondensity waves is considered for a linear frequency modulation of the radiated pulse. It is shown that full compression of the modulated signal is not achievable due to the frequency dependence of the refractive index of the photon-density wave. The degree of compression of the chirp signals with different parameters has been estimated.



Influence of the Thickness of the Barrier Layer in Nanoheterostructures and the Gate-Drain Capacitance on the Microwave and Noise Parameters of Field-Effect AlGaN/GaN HEMT
Abstract
We perform a computational and analytical study of how the thickness of the barrier layer in nanoheterostructures and the gate-drain capacitance Cgd influence the microwave parameters (limiting frequency of current amplification and maximum generation frequency) and noise parameters (noise factor) of a field-effect AlGaN/GaN high electron mobility transistor. The results of complex measurements of the parameters of such transistors based on nanoheterostructures with a barrier layer thickness of 3.5–15.7 nm, which were performed within the framework of four technological routes in the range 0.1–67 GHz, are presented. It is shown that in order to reduce the noise ratio and improve the microwave parameters, it is necessary to optimize both the parameters of nanoheterostructures and the manufacturing techniques. In particular, the thickness of the barrier layer should be reduced, and the gate length should be chosen such as to maximize the product of the squared maximum current amplification frequency in the interior of the transistor and the output impedance between the drain and the source. Additionally, attention should be given to the shape of the gate to reduce the capacitance Cgd. Under certain conditions of manufacture of nitride field-effect HEMT, one can achieve a lower noise factor compared with the transistors based on arsenide nanoheterostructures.



Multiplexing Effect Due to Exposure of the Working Substance of a Spin Echo Processor to Magnetic Field Pulses
Abstract
We consider a spin echo processor that uses a magnetically ordered material (ferrite) as a working substance. It is shown that it is possible to achieve suppression of the crosstalk (spurious signals) excited by radio-frequency pulses from different chains arriving at the system if the working substance is affected by sufficiently long magnetic field pulses. Thus, time-division multiplexing of the information processes can be carried out.


