Sorbent based on manganese(III, IV) oxides of the MDM brand: preparation, sorption characteristics and application for purification of liquid radioactive waste from strontium and radium radionuclides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The optimal conditions for the synthesis of a granular sorbent based on mixed Mn(III, IV) oxide by the interaction of aqueous solutions of MnSO4 and KMpO4 in an alkaline medium were determined: the molar ratio Mn2+/MnO4 is 1.70–1.80; the pH of the reaction mixture is 11.0–12.5; the calcination temperature is 220°C. For the sorbent obtained under optimal conditions, the values of the distribution coefficient (Kd) 90Sr in 0.01 M CaCl2 solution, the static exchange capacity for calcium, the hydromechanical strength of granules, as well as the dependence of Kd 90Sr on the concentration of sodium and calcium ions were determined. It is shown that the resulting sorbent has higher sorption characteristics with respect to strontium compared with known sorbents. A technology has been developed for the production of pilot batches of sorbent, named MDM. Examples of the use of MDM sorbent for the purification of various types of liquid radioactive waste from strontium and radium radionuclides are given.

Full Text

Restricted Access

About the authors

V. V. Milyutin

Frumkin Institute of Physical Chemistry and Electrochemistry

Author for correspondence.
Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

O. A. Kononenko

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

N. A. Nekrasova

Frumkin Institute of Physical Chemistry and Electrochemistry

Email: vmilyutin@mail.ru
Russian Federation, Moscow, 119071

References

  1. Myasoedov B.F., Kalmykov S.N. // Mendeleev Commun. 2015. Vol. 25. N 5. P. 319–328. https://doi.org/10.1016/j.mencom.2015.09.001.
  2. Castrillejo M., Casacuberta N., Breier C.F., Pike S.M., Masqué P., Buesseler K.O. // Environ. Sci. Technol. 2016. Vol. 50. N 1. P. 173–180. https://doi.org/10.1021/acs.est.5b03903.
  3. Milyutin V.V., Nekrasova N.A., Kaptakov V.O., Kozlitin E.A. // Adsorption. 2023. Vol. 29. P. 323–334. https://doi.org/10.1007/s10450-023-00407-w.
  4. Wilmarth W.R., Lumetta G.J., Johnson M.E., Poirier M.R., Thompson M.C., Suggs P.C., Machara N.P. // Solvent Extr. Ion Exch. 2011. Vol. 29. P. 1–48. https://doi.org/10.1080/07366299.2011.539134.
  5. Voronina A.V., Semenishchev V.S., Gupta D.K. // Strontium Contamination in the Environment: vol. 88 of The Series of Environmental Chemistry, Springer, 2020, pp. 203–226. https://doi.org/10.1007/978-3-030-15314-4_11.
  6. Hartmann E., Geckeis H., Rabung T., Lützenkirchen J., Fanghänel T. // Radiochim. Acta. 2008. Vol. 96. N 9. P. 699–707. https://doi.org/10.1524/ract.2008.1556.
  7. Milyutin V.V., Gelis V.M., Nekrasova N.A., Kononenko O.A., Vezentsev A.I., Volovicheva N.A., Korol’kova S.V. // Radiochemistry. 2012. Vol. 54. N 1. P. 75–78. https://doi.org/10.1134/S1066362212010110.
  8. Milyutin V.V., Nekrasova N.A., Belousov P.E., Krupskaya V.V. // Radiochemistry. 2021. Vol. 63. N 6. P. 741–746. https://doi.org/10.1134/S1066362221060059.
  9. Misaelides P. // Micropor. Mesopor. Mater. 2011. Vol. 144. N 1. P. 15–18. https://doi.org/10.1016/j.micromeso.2011.03.024.
  10. Kwon S., Choi Y., Sigh B.K. // Appl. Surf. Sci. 2020. Vol. 506. Article 145029. https://doi.org/10.1016/j.apsusc.2019.145029.
  11. Kuznetsov V.A., Generalova V.A. // Radiochemistry. 2000. Vol. 42. N 2. P. 166–169.
  12. Valsala T.P., Joseph A., Sonar N.L., Sonavane M.S., Shah J.G., Raj K., Venugopal V. // J. Nucl. Mater. 2010. Vol. 404. N 2. P. 138–143. https://doi.org/10.1016/j.jnucmat.2010.07.017.
  13. Singh B.K., Tomar R., Kumar S., Kar A.S., Tomar B.S., Ramanathan S., Manchanda V.K. // Radiochim. Acta. 2014. Vol. 102. N 3. P. 255–261. https://doi.org/10.1515/ract-2014-2118.
  14. Voronina A.V., Semenishchev V.S. // J. Radioanal. Nucl. Chem. 2016. Vol. 307. P. 577–590. https://doi.org/10.1007/s10967-015-4197-z.
  15. Ivanets A., Milyutin V., Shashkova I., Kitikova N., Nekrasova N., Radkevich A. // J. Radioanal. Nucl. Chem. 2020. Vol. 324. N 3. P. 1115–1123. https://doi.org/10.1007/s10967-020-07140-6.
  16. Thakkar R., Chudasama U. // J. Hazard. Mater. 2009. Vol. 172. N 1. P. 129–137. https://doi.org/10.1016/j.jhazmat.2009.06.154.
  17. Korneikov R.I., Ivanenko V.I. // Inorg. Mater. 2020. Vol. 56. P. 502–506. https://doi.org/10.1134/S0020168520050088.
  18. Bevara S., Giri P., Patwe S.J., Achary S.N., Mishra R.K., Kumar A., Sinha A.K., Kaushik C.P., Tyagi A.K. // J. Environ. Chem. Eng. 2018. Vol. 6. N 2. P. 2248–2261. https://doi.org/10.1016/j.jece.2018.03.013.
  19. Villard A., Toquer G., Siboulet B., Trens P., Grandjean A., Dufrêche J.-F. // Chemosphere. 2018. Vol. 202. P. 33–39. https://doi.org/10.1016/j.chemosphere.2018.02.017.
  20. Tratnjek T., Deschanels X., Hertz A., Rey C., Causse J. // J. Hazard. Mater. 2022. Vol. 440. Article 129755. https://doi.org/10.1016/j.jhazmat.2022.129755.
  21. Decaillon J.G., Andres Y., Mokili B.M., Abbe J.C., Tournoux M., Patarin J. // Solvent Extr. Ion Exch. 2002. Vol. 20. N 2. P. 273–291. https://doi.org/10.1081/SEI-120003027.
  22. Hobbs D.Т., Barnes M.J., Pulmano R.L., Marshall K.M., Edwards T.B., Bronikowski M.G., Fink S.D. // Sep. Sci. Technol. 2005. Vol. 40. N 15. P. 3093–3111. https://doi.org/10.1080/01496390500385129.
  23. Lehto J., Brodkin L., Harjula R., Tusa E. // Nucl. Technol. 1999. Vol. 127. N 1. P. 81–87. https://doi.org/10.13182/NT99-A2985.
  24. Milyutin V.V., Nekrasova N.A., Yanicheva N.Yu., Kalashnikova G.O., Ganicheva Ya.Yu. // Radiochemistry. 2017. Vol. 59. N 1. Р. 65–69. https://doi.org/10.1134/S1066362217010088.
  25. Park Y., Shin W.S., Reddy G.S., Shin S.-J., Choi S.-J. // J. Nanoelectron. Optoelectron. 2010. Vol. 5. N 2. P. 238–242. https://doi.org/10.1166/jno.2010.1101.
  26. Solbra S., Allison N., Waite S., Mihalovsky S.V., A.I., Bortun L.N., Clearfield A. // Environ. Sci. Technol. 2001. Vol. 35. N 3. Р. 626–629. https://doi.org/10.1021/es000136x.
  27. Matskevich A.I., Tokar E.A., Sokolnitskaya T.A., Markin N.S., Priimak I.D., Egorin A.M. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. P. 5691–5699. https://doi.org/10.1007/s10967-022-08636-z.
  28. Singh O.V., Tandon S.N. // Int. J. Appl. Radiat. Isot. 1977. Vol. 28. N 8. P. 701–704. https://doi.org/10.1016/0020-708X(77)90088-6.
  29. Ivanets A.I., Milutin V.V., Prozorovich V.G., Kouznetsova T.F., Nekrasova N.A. // J. Radioanal. Nucl. Chem. 2019. Vol. 321. N 1. P. 243–253. https://doi.org/10.1007/s10967-019-06557-y.
  30. Egorin A., Sokolnitskaya T., Azarova Y., Portnyagin A., Balanov M., Misko D., Shelestyuk E., Kalashnikova A., Tokar E., Tananaev I., Avramenko V. // J. Radioanal. Nucl. Chem. 2018. Vol. 317. P. 243–251. https://doi.org/10.1007/s10967-018-5905-2.
  31. Bevara S., Giri P., Achary S.N., Bhallerao G., Mishra R.K., Kumar A., Kaushik C.P., Tyagi A.K. // J. Environ. Chem. Eng. 2018. Vol. 6. N 6. P. 7200–7213. https://doi.org/10.1016/j.jece.2018.11.021.
  32. Cai J., Liu J., Suib S.L. // Chem. Mater. 2002. Vol. 14. N 5. P. 2071–2077. https://doi.org/10.1021/cm010771h.
  33. Леонтьева Г.В. // ЖПХ. 1997. Т. 70. № 10. С. 1615–1619.
  34. Feng Q., Kanoh H., Ooi K. // J. Mater. Chem. 1999. Vol. 9. N 2. P. 319–333. https://doi.org/10.1039/a805369c.
  35. Golden D.C., Dixon J.B., Chen C.C. // Clays Clay Miner. 1986. Vol. 34. P. 511–520. https://doi.org/10.1346/CCMN.1986.0340503.
  36. Леонтьева Г.В., Вольхин В.В., Бахирева О.И. Патент RU 2094115 C1. 1997.
  37. Ворошилов Ю.А., Логунов М.В., Прокофьев Н.Н., Землина Н.П. // Радиохимия. 2003. Т. 45. № 1. С. 62–65.
  38. Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия, 1970. 360 с.
  39. Шарло Г. Методы аналитической химии. М.: Химия, 1965. 976с.
  40. Карлин Ю.В., Чуйков В.Ю., Адамович Д.В., Сластенников Ю.Т., Ильин В.А., Суменко А.В., Флит В.Ю., Дмитриев С.А., Соболев И.А. // Атом. энергия. 2001. Т. 90. Вып. 1. С. 6–69.
  41. Адамович Д.В., Арустамов А.Э., Гелис В.М., Кононенко О.А., Милютин В.В. Патент RU 2263536C1. 2004. Oпубл. 10.11.2005 // Б.И. 2005. № 31.
  42. Савкин А.Е. // Вопр. атом. науки и техники. Сер.: Материаловедение и новые материалы. 2019. Вып. 3 (99). С. 39–50.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Derivatogram of a sample of mixed Mn(III, IV) oxide.

Download (94KB)
3. Fig. 2. Dependence of Kd 90Sr on the concentration of sodium ions on sorbents: 1 – Mn(III, IV) oxide, 2 – Na-A zeolite, 3 – Tokem-100 sulfocationite.

Download (67KB)
4. Fig. 3. Dependence of Kd 90Sr on the concentration of calcium ions on sorbents: 1 – Mn(III, IV) oxide, 2 – Tokem-100 sulfocationite, 3 – Na-A zeolite.

Download (62KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».