Clique Numbers of Random Subgraphs of Some Distance Graphs
- Авторлар: Gusev A.S.1
-
Мекемелер:
- Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
- Шығарылым: Том 54, № 2 (2018)
- Беттер: 165-175
- Бөлім: Large Systems
- URL: https://journals.rcsi.science/0032-9460/article/view/166505
- DOI: https://doi.org/10.1134/S0032946018020059
- ID: 166505
Дәйексөз келтіру
Аннотация
We consider a class of graphs G(n, r, s) = (V (n, r),E(n, r, s)) defined as follows:
\(V(n,r) = \{ x = ({x_{1,}},{x_2}...{x_n}):{x_i} \in \{ 0,1\} ,{x_{1,}} + {x_2} + ... + {x_n} = r\} ,E(n,r,s) = \{ \{ x,y\} :(x,y) = s\} \)![]()
where (x, y) is the Euclidean scalar product. We study random subgraphs G(G(n, r, s), p) with edges independently chosen from the set E(n, r, s) with probability p each. We find nontrivial lower and upper bounds on the clique number of such graphs.Авторлар туралы
A. Gusev
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
Хат алмасуға жауапты Автор.
Email: aretalogus@inbox.ru
Ресей, Moscow
Қосымша файлдар
