Self-sustained Oscillations and Limit Cycles in Rayleigh System with Cubic Return Force

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An oscillatory system with an excitation mechanism as in a Rayleigh oscillator, but with a nonlinear (cubic) returning force, is investigated. Using the accelerated convergence method and the continuation procedure for the parameter, limit cycles are constructed and the amplitudes and periods of self-oscillations are calculated. This is done for a wide range of feedback coefficient values, in which this coefficient is not asymptotically small or large. The proposed iterative procedure allows to achieve the specified accuracy of calculations. The analysis of the features of the limit cycle caused by an increase in the self-excitation coefficient is carried out. The results obtained are compared with the self-oscillations of a classical Rayleigh oscillator with a linear returning force.

作者简介

S. Kumakshev

Ishlinsky Institute for Problems in Mechanics RAS

编辑信件的主要联系方式.
Email: kumak@ipmnet.ru
Russia, Moscow

参考

  1. Kharkevich A.A. Self-Induced Vibrations. Moscow: Gostekhizdat, 1953. 171 p. (in Russian)
  2. Andronov A.A., Vitt A.A., Khaikin S.E. Theory of Oscillations. Moscow: Fizmatgiz, 1959. 915 p. (in Russian)
  3. Lefschetz S. Differential Equations: Geometric Theory. N.Y.: Wiley, 1957. 390 p.
  4. Bogoliubov N.N., Mitropolsky Y.A. Asymptotic Methods in the Theory of Nonlinear Oscillations. Мoscow: Nauka, 1958. 462 p.
  5. Blaquiere A. Nonlinear System Analysis. N.Y.: Acad. Press, 1966. 408 pp.
  6. Zhuravlev V.F., Klimov D.M. Applied Methods in the Vibration Theory. Мoscow: Nayka, 1988. 326 p. (in Russian)
  7. Mishchenko E.F., Rozov N.Kh. Differential Equations with Small Parameters and Relaxation Oscillations. N. Y.: Plenum Press, 1980. 228 p.
  8. Volosov V.M., Morgunov B.I. Method of Averaging in the Theory of Nonlinear Oscillatory Systems. Moscow: Izd-vo MGU, 1971. 507 p. (in Russian)
  9. Akulenko L.D. Asymptotic Methods of Optimal Control. Moscow: Nauka, 1987. 365 p. (in Russian)
  10. Malkin I.G. Some Problems of the Theory of Nonlinear Oscillations. Moscow: Gostekhizdat, 1956. 491 p. (in Russian)
  11. Dorodnicyn A.A. Asymptotic solution of Van Der Pol’s equation // PMM, 1947, vol. 11, no. 3, pp. 313–328.
  12. Cartwright M.L. Van der Pol’s equation for relaxation oscillations // Contribut. to Theory Nonlin. Oscill. Ann. Math. Studies, 1952, no. 29, pp. 3–18.
  13. Krogdahl W.S. Numerical solutions of the Van der Pol equation // Z. Angew. Math. Phys., 1960, vol. 2, no. 1, pp. 59–63.
  14. Urabe M. Numerical study of periodic solutions of van der Pol’s equation. // in: Tr. Mezhdunarod. Simpoz. Nelinejnym Kolebaniyam, Mezhdunarod. Soyuz. Teor. Prikl. Mekh., Kiev, 1961, 1963, no. 2, pp. 367–375.
  15. Akulenko L.D., Korovina L.I., Nesterov S.V. Self-induced vibrations in an essentially nonlinear system // Mech. Solids, 2002, vol. 37, no. 3, pp. 36–41.
  16. Akulenko L.D., Kumakshev S.A., Nesterov S.V. Effective numerical-analytical solution of isoperimetric variational problems of mechanics by an accelerated convergence method // JAMM, 2002, vol. 66, no. 5, pp. 693–708.
  17. Akulenko L.D., Korovina L.I., Kumakshev S.A., Nesterov S.V. Self-sustained oscillations of Rayleigh and Van der Pol oscillators with moderately large feedback factors // JAMM, 2004, vol. 68, no. 2, pp. 241–248.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (49KB)
3.

下载 (141KB)

版权所有 © С.А. Кумакшев, 2023

##common.cookie##