Self-sustained Oscillations and Limit Cycles in Rayleigh System with Cubic Return Force

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An oscillatory system with an excitation mechanism as in a Rayleigh oscillator, but with a nonlinear (cubic) returning force, is investigated. Using the accelerated convergence method and the continuation procedure for the parameter, limit cycles are constructed and the amplitudes and periods of self-oscillations are calculated. This is done for a wide range of feedback coefficient values, in which this coefficient is not asymptotically small or large. The proposed iterative procedure allows to achieve the specified accuracy of calculations. The analysis of the features of the limit cycle caused by an increase in the self-excitation coefficient is carried out. The results obtained are compared with the self-oscillations of a classical Rayleigh oscillator with a linear returning force.

Sobre autores

S. Kumakshev

Ishlinsky Institute for Problems in Mechanics RAS

Autor responsável pela correspondência
Email: kumak@ipmnet.ru
Russia, Moscow

Bibliografia

  1. Kharkevich A.A. Self-Induced Vibrations. Moscow: Gostekhizdat, 1953. 171 p. (in Russian)
  2. Andronov A.A., Vitt A.A., Khaikin S.E. Theory of Oscillations. Moscow: Fizmatgiz, 1959. 915 p. (in Russian)
  3. Lefschetz S. Differential Equations: Geometric Theory. N.Y.: Wiley, 1957. 390 p.
  4. Bogoliubov N.N., Mitropolsky Y.A. Asymptotic Methods in the Theory of Nonlinear Oscillations. Мoscow: Nauka, 1958. 462 p.
  5. Blaquiere A. Nonlinear System Analysis. N.Y.: Acad. Press, 1966. 408 pp.
  6. Zhuravlev V.F., Klimov D.M. Applied Methods in the Vibration Theory. Мoscow: Nayka, 1988. 326 p. (in Russian)
  7. Mishchenko E.F., Rozov N.Kh. Differential Equations with Small Parameters and Relaxation Oscillations. N. Y.: Plenum Press, 1980. 228 p.
  8. Volosov V.M., Morgunov B.I. Method of Averaging in the Theory of Nonlinear Oscillatory Systems. Moscow: Izd-vo MGU, 1971. 507 p. (in Russian)
  9. Akulenko L.D. Asymptotic Methods of Optimal Control. Moscow: Nauka, 1987. 365 p. (in Russian)
  10. Malkin I.G. Some Problems of the Theory of Nonlinear Oscillations. Moscow: Gostekhizdat, 1956. 491 p. (in Russian)
  11. Dorodnicyn A.A. Asymptotic solution of Van Der Pol’s equation // PMM, 1947, vol. 11, no. 3, pp. 313–328.
  12. Cartwright M.L. Van der Pol’s equation for relaxation oscillations // Contribut. to Theory Nonlin. Oscill. Ann. Math. Studies, 1952, no. 29, pp. 3–18.
  13. Krogdahl W.S. Numerical solutions of the Van der Pol equation // Z. Angew. Math. Phys., 1960, vol. 2, no. 1, pp. 59–63.
  14. Urabe M. Numerical study of periodic solutions of van der Pol’s equation. // in: Tr. Mezhdunarod. Simpoz. Nelinejnym Kolebaniyam, Mezhdunarod. Soyuz. Teor. Prikl. Mekh., Kiev, 1961, 1963, no. 2, pp. 367–375.
  15. Akulenko L.D., Korovina L.I., Nesterov S.V. Self-induced vibrations in an essentially nonlinear system // Mech. Solids, 2002, vol. 37, no. 3, pp. 36–41.
  16. Akulenko L.D., Kumakshev S.A., Nesterov S.V. Effective numerical-analytical solution of isoperimetric variational problems of mechanics by an accelerated convergence method // JAMM, 2002, vol. 66, no. 5, pp. 693–708.
  17. Akulenko L.D., Korovina L.I., Kumakshev S.A., Nesterov S.V. Self-sustained oscillations of Rayleigh and Van der Pol oscillators with moderately large feedback factors // JAMM, 2004, vol. 68, no. 2, pp. 241–248.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (49KB)
3.

Baixar (141KB)

Declaração de direitos autorais © С.А. Кумакшев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies