Моделирование диссипативных процессов в закрытых и открытых гидродинамических системах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обсуждается моделирование процессов переноса как в закрытых, так и в открытых гидродинамических системах. Основное внимание уделяется рассмотрению соответствующих механизмов. Показано, что в слабо неравновесных системах диссипативные процессы обусловлены микроскопическими тепловыми молекулярными флуктуациями, а их необратимость связана с непотенциальным характером межмолекулярных взаимодействий. В открытых гидродинамических системах при достаточно больших скоростях сдвига реология флюида меняется. Характер этих изменений продемонстрирован с помощью метода молекулярной динамики. Показано, что с ростом скорости сдвига как простая жидкость, так и наножидкости становятся псевдопластичными. В последнем случае критическая скорость сдвига изменения реологии зависит от концентрации наночастиц и их размера. Однако при достаточно больших скоростях сдвига диссипативные процессы перестают зависеть от размеров внутренних структурных элементов среды. Ее вязкость резко падает. Во всех случаях изменение реологии связано с трансформацией структуры среды, в частности, с деградацией ближнего порядка.

Об авторах

В. Я. Рудяк

Новосибирский государственный архитектурно-строительный университет; Сибирский федеральный университет

Email: valery.rudyak@mail.ru
Новосибирск, Россия; Новосибирск, Россия

Список литературы

  1. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. 831 с.
  2. Лойцянский Л.Г., Лурье А.И. Курс теоретической механики. Т. 2. М.: Дрофа, 2006. 719 с.
  3. Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973. 758 с.
  4. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.
  5. Седов Л.И. Механика сплошной среды. М.: Наука, 1970. 492 с.
  6. Гроот де С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
  7. Арнольд В.И. Математические методы классической механики. М.: Наука, 1974. 431 с.
  8. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 1. Кинетическая теория. Новосибирск: НГАСУ, 2004. 320 с.
  9. Бэкингем Э., Клаверье П., Рейн Р. и др. Межмолекулярные взаимодействия: от двухатомных молекул до биополимеров. М.: Мир, 1981. 694 с.
  10. Sinai Ya.G. Dynamical systems. Collection of papers. Singapore: World Scientific, 1991. 673 p.
  11. Заславский Г.М. Стохастичность динамических систем. М.: Наука, 1984. 271 с.
  12. Лихтенберг А., Либерман М. Регулярная и стохастическая динамика. М.: Мир, 1984. 528 с.
  13. Зубарев Д.Н. Неравновесная статистическая термодинамика. М.: Наука, 1971. 415 с.
  14. Зубарев Д.Н., Морозов В.Г., Репке Г. Статистическая механика неравновесных процессов. М.: Физматлит, 2002. 431 с.
  15. Климонтович Ю.Л. Статистическая теория открытых систем. М.: ТОО Янус, 1995. 567 с.
  16. Кадомцев Б.Б. Динамика и информация. М.: УФН, 1999. 397 с.
  17. Чепмен С., Каулинг Е. Математическая теория неоднородных газов. М.: Изд-во иностр. лит., 1960. 510 с.
  18. Burnett D. The distribution of molecular velocities in a slightly non-uniform gas // Proc. London Math. Soc. 1935. V. 39. № 6. P. 385–430.
  19. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: University Press, 2017. 640 p.
  20. Chandler D. Introduction to modern statistical mechanics. Oxford: Univ. Press, 1987. 286 p.
  21. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 2. Гидромеханика. Новосибирск: НГАСУ, 2005. 468 с.
  22. Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems // J. Phys. Soc. Japan. 1957. V. 12. № 6. P. 570–584. https://doi.org/10.1143/JPSJ.12.570
  23. Kubo R., Yokota M., Nakajima S. Statistical-mechanical theory of irreversible processes. II. Reaction on thermal disturbances // J. Phys. Soc. Japan. 1957. V. 12. № 11. P. 1203–1226. https://doi.org/10.1143/JPSJ.12.1203
  24. Green H.S. Theories of transport in fluids // J. Math. Phys. 1961. V. 2. № 2. P. 344–348. https://doi.org/10.1063/1.1703720
  25. Lebowitz J.L. Hamiltonian flows and rigorous results in non-equilibrium statistical mechanics // Statistical mechanics, new concepts, new problems, new applications. Proc. of I.U.P.A.P. Conf. on Statistical Mech. Chicago: University Press, 1971. P. 41–66.
  26. Резибуа П., Леннер де М. Классическая кинетическая теория жидкостей и газов. М.: Мир, 1980. 423 с.
  27. Ernst M.H. Formal theory of transport coefficients to general order in the density // Physica. 1966. V. 32. № 2. P. 209–243. https://doi.org/10.1016/0031-8914(66)90055-3
  28. Хонькин А.Д. Уравнения для пространственно-временных и временных корреляционных функций и доказательство эквивалентности результатов методов Чепмена–Энскога и временных корреляционных функций // ТМФ. 1970. Т. 5. № 1. С. 125–135.
  29. Thompson A.P., Aktulga H.M., Berger R. et al. LAMMPS — A flexible simulation tool for particle-based materials modelling at the atomic, meso, and continuum scales // Comp. Phys. Comm. 2022. V. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
  30. Lide D.R. (ed.) Handbook of chemistry and physics. CRC, 2010. 2760 p.
  31. Bird R.B., Armstrong R.C., Hassager O. Dynamics of polymeric liquids. V.1. Fluid mechanics. N.-Y.: Wiley, 1987. 649 p.
  32. Tanner R.I., Walters K. Rheology: an historical perspective. Amsterdam: Elsevier, 1998. 255 p.
  33. Chhabra R.P., Richardson J.F. Non-Newtonian flow and applied rheology. Oxford: Butterworth-Heinemann, 2008. 536 p. https://doi.org/10.1016/B978-0-7506-8532-0.X0001-7
  34. Mewis J., Wagner N.J. Colloidal suspension rheology. Cambridge: University Press, 2011. 393 p. https://doi.org/10.1017/CBO9780511977978
  35. Maxwell J.C. A treatise on electricity and magnetism. Oxford: Clarendon Press, 1881. 528 p. https://doi.org/treatiseonelectr01maxwrich
  36. Einstein A. Eine neue Bestimmung der Moleküldimensionen // Ann. Phys. 1906. V. 324. P. 289–306. https://doi.org/10.1002/andp.19063240204
  37. Minakov A.V., Rudyak V.Yа., Pryazhnikov M.I. Rheological behavior of water and ethylene glycol based nanofluids with oxide nanoparticles // Colloids& Surfaces A: Physicochem.&Engin. Aspects. 2018. V. 554. P. 279–285. https://doi.org/10.1016/j.colsurfa.2018.06.051
  38. Rudyak V.Ya. Thermophysical characteristics of nanofluids and transport process mechanisms // J. Nanofluids. 2019. V. 8. P. 1–16. https://doi.org/10.1166/jon.2019.1561
  39. Rudyak V., Minakov A., Pryazhnikov M. Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluid // J. Molecular Liquids. 2021. V. 329. P. 115517. https://doi.org/10.1016/j.molliq.2021.115517
  40. Rudyak V.Ya., Dashapilov G.R., Minakov A.V. et al. Comparative characteristics of viscosity and rheology of nanofluids with multi-walled and single-walled carbon nanotubes // Diamond Related Mat. 2023. V. 132. P. 109616. https://doi.org/10.1016/j.diamond.2022.109616
  41. Rudyak V.Ya., Minakov A.V., Pryazhnikov M.I.Rheology and thermal conductivity of nanofluids with carbon nanotubes // Adv. Material Sci Research. 2022. V. 66. P. 1–92.
  42. Рудяк В.Я., Краснолуцкий С.Л. Диффузия наночастиц в разреженном газе // ЖТФ. 2002. Т. 72. № 7. С.13–20.
  43. Рудяк В.Я., Краснолуцкий С.Л., Иванов Д.А. О потенциале взаимодействия наночастиц // Доклады Академии наук. 2012. Т. 442. № 1. С. 54–56.
  44. Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. V. 112. № 14. P. 6472–6486. https://doi.org/10.1063/1.481208
  45. Batchelor G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles // J. Fluid Mech. 1977. V. 83. № 01. P. 97–117. https://doi.org/10.1017/S0022112077001062
  46. Minakov A.V., Rudyak V.Ya., Pryazhnikov M.I. Systematic experimental study of the viscosity of nanofluids // Heat Transfer Eng. 2020. V. 42. № 10. P. 1–17. https://doi.org/10.1080/01457632.2020.1766250
  47. Монтролл Е.В. О статистической механике процессов переноса // Термодинамика необратимых процессов. М.: ИЛ, 1962. С. 233–283.
  48. Lattinger J.M. Theory of thermal transport coefficients // Phys. Rev. A. 1964. V. 135. № 6. P. 1505–1514.
  49. Рудяк В.Я., Белкин А.А., Иванов Д.А. и др. Моделирование процессов переноса на основе метода молекулярной динамики. Коэффициент самодиффузии // ТВТ. 2008. Т. 46. № 1. С. 35–44.
  50. Rudyak V. Diffusion of nanoparticles in gases and liquids // Handbook of Nanoparticles, 2015. P. 1–21. https://doi.org/10.1007/978-3-319-13188-7_54-1
  51. Belkin A., Rudyak V., Krasnolutskii S. Molecular dynamics simulation of carbon nanotubes diffusion in water // Mol. Simulation. 2022. V. 48. № 9. P. 752–759. https://doi.org/10.1080/08927022.2022.2053119
  52. Ikeshoji T., Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface // Mol. Phys. 1994. V. 81. № 2. P. 51–261. https://doi.org/10.1080/00268979400100171
  53. Evans D.J., Morris G.P. Statistical mechanics of nonequilibrium liquids. Canberra: Australian National University, 2007. 296 p. https://doi.org/10.1016/C2013-0-10633-2
  54. Muller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity // J. Chem. Phys. 1997. V. 106. № 14. P. 6082–6085. https://doi.org/10.1063/1.473271
  55. Jabbari F., Rajabpour A., Saedodin S. Thermal conductivity and viscosity of nanofluids: A review of recent molecular dynamics studies // Chem. Eng. Sci. 2017. V. 174. P. 67–81. https://doi.org/10.1016/j.ces.2017.08.034
  56. Rudyak V.Yа., Pryazhnikov M.I., Minakov A.V. et al. Comparison of thermal conductivity of nanofluids with single-walled and multi-walled carbon nanotubes // Diamond Related Mat. 2023. V. 139. P. 110376.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».