Modeling dissipative processes in open and closed hydrodynamic systems
- Authors: Rudyak V.Y.1,2
-
Affiliations:
- Novosibirsk State University of Architecture and Civil Engineering
- Siberian Federal University
- Issue: Vol 89, No 5 (2025)
- Pages: 825-842
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/351669
- DOI: https://doi.org/10.7868/S3034575825050091
- ID: 351669
Cite item
Abstract
About the authors
V. Ya. Rudyak
Novosibirsk State University of Architecture and Civil Engineering; Siberian Federal University
Email: valery.rudyak@mail.ru
Novosibirsk, Russia; Novosibirsk, Russia
References
- Loitsyanskii L.G. Mechanics of liquids and gases. Oxford–N.-Y.: Pergamon Press, 1966. 804 p. https://doi.org/10.1016/C2013-0-05328-5
- Loitsyansky L.G., Lurie A.I. Course of theoretical mechanics. V. 2. Dynamics. Moscow: Nauka, 1984. 604 p. (In Russian).
- Batchelor G.K. An introduction to fluid dynamics. Cambridge: University Press, 2012. 615 p. https://doi.org/10.1017/CBO9780511800955
- Landau L.D., Lifshits E.M. Fluid mechanics. Elsiver, 2013. 558 p. https://doi.org/10.1016/C2013-0-03799-1
- Sedov L.I. A course in continuum mechanics. Wolters-Noordhoff, 1971. 305 p. https://lib.ugent.be/catalog/rug01:002004556
- De Groot S., Mazur P. Nonequilibrium thermodynamics. Courier Corporation, 2013. 528 p.
- Arnold V.I. Mathematical methods of classical mechanics. Springer-Verlag New York Inc., 1989. 511 p. https://doi.org/10.1007/978-1-4757-2063-1
- Rudyak V.Ya. Statistical aerohydromechanics of homogeneous and heterogeneous media. Vol. 1. Kinetic theory. Novosibirsk: NSUACE, 2004. 320 p. (In Russian)
- Buckingham E., Clavier P., Rein R. et al. Intermolecular interactions: from diatomics to biopolymers. New York: Pullman Wiley-Interscience, 1978. 447 p.
- Sinai Ya.G. Dynamical systems. Collection of papers. Singapore: World Scientific, 1991. 673 p.
- Zaslavskiy G.M. Stochasticity of dynamical system. Moscow: Science Press, 1984. 271 p.
- Lichtenberg A., Lieberman M. Regular and stochastic dynamics. New York: Springer, 2010. 692 p.
- Zubarev D. Nonequilibrium statistical thermodynamics. New York: Consultants Bureau, 1974. 489 p.
- Zubarev D., Morozov V., Repke G. Statistical mechanics of nonequilibrium processes. V. 1. Wiley, 1996. 375 p.
- Klimontovich Yu.L. Statistical theory of open systems // Fundamental Theories of Physics, 1994, vol. 67. https://doi.org/10.1007/978-94-011-0175-2
- Kadomtsev B.B. Dynamics and information. Moscow: Physics-Uspekhi, 1999. 397 p. (In Russian).
- Chapman S. Cowling T.G. The Mathematical theory of non-uniform gases. Cambridge: University Press. 1990. 423 p.
- Burnett D. The distribution of molecular velocities in a slightly non-uniform gas // Proc. London Math. Soc. 1935, vol. 30, no. 6, pp. 385–430.
- Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: University Press, 2017. 640 p.
- Chandler D. Introduction to modern statistical mechanics. Oxford: University Press, 1987. 286 p.
- Rudyak V. Ya. Statistical aerohydromechanics of homogeneous and heterogeneous media. Vol. 2, Hydromechanics. Novosibirsk: NSUACE, 2005. 468 p.
- Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems // J. Phys. Soc. Japan, 1957, vol. 12, no. 6, pp. 570–584. https://doi.org/10.1143/JPSJ.12.570
- Kubo R., Yokota M., Nakajima S. Statistical-mechanical theory of irreversible processes. II. Reaction on thermal disturbances // J. Phys. Soc. Japan, 1957, vol. 12, no. 11, pp. 1203–1226. https://doi.org/10.1143/JPSJ.12.1203
- Green H.S. Theories of transport in fluids // J. Math. Phys., 1961, vol. 2, no. 2, pp. 344–348. https://doi.org/10.1063/1.1703720
- Lebowitz J.L. Hamiltonian flows and rigorous results in non-equilibrium statistical mechanics // Statistical mechanics, new concepts, new problems, new applications. Proc. of I.U.P.A.P. Conf. on Statistical Mech. Chicago: University Press, 1971, pp. 41–66.
- Résibois P., De Leener M. Classical kinetic theory of fluids. N.Y., London: Wiley-Interscience, 1977. 412 p.
- Ernst M.H. Formal theory of transport coefficients to general order in the density // Physica, 1966, vol. 32, no. 2, pp. 209–243. https://doi.org/10.1016/0031-8914(66)90055-3
- Khon'kin A.D. Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman-Enskog and time correlation methods // Theoretical Math. Phys., 1970, vol. 5, pp. 1029–1037.
- Thompson A.P., Aktulga H.M., Berger R. et al. LAMMPS — A flexible simulation tool for particle-based materials modelling at the atomic, meso, and continuum scales // Comp. Phys. Comm., 2022, vol. 271, pp. 108171. https://doi.org/10.1016/j.cpc.2021.108171
- Lide D.R. (ed.) Handbook of chemistry and physics. CRC, 2010. 2760 p.
- Bird R.B., Armstrong R.C., Hassager O. Dynamics of polymeric liquids. V.1. Fluid mechanics. New York: Wiley, 1987. 649 p.
- Tanner R.I., Walters K. Rheology: an historical perspective. Amsterdam: Elsevier, 1998. 255 p.
- Chhabra R.P., Richardson J.F. Non-Newtonian flow and applied rheology. Oxford: Butterworth-Heinemann, 2008. 536 p. https://doi.org/10.1016/B978-0-7506-8532-0.X0001-7
- Mewis J., Wagner N.J. Colloidal suspension rheology. Cambridge: University Press, 2011. 393 p. https://doi.org/10.1017/CBO9780511977978
- Maxwell J.C. A treatise on electricity and magnetism. Oxford: Clarendon Press, 1881. 528 p. https://doi.org/treatiseonelectr01maxwrich
- Einstein A. Eine neue Bestimmung der Moleküldimensionen // Ann. Phys., 1906, vol. 324, pp. 289–306. https://doi.org/10.1002/andp.19063240204
- Minakov A.V., Rudyak V.Yа., Pryazhnikov M.I. Rheological behavior of water and ethylene glycol based nanofluids with oxide nanoparticles// Colloids& Surfaces A: Physicochem.&Engin. Aspects, 2018, vol. 554, pp. 279–285. https://doi.org/10.1016/j.colsurfa.2018.06.051
- Rudyak V.Ya. Thermophysical characteristics of nanofluids and transport process mechanisms // J. Nanofluids, 2019, vol. 8, pp. 1–16. https://doi.org/10.1166/jon.2019.1561
- Rudyak V., Minakov A., Pryazhnikov M. Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluid // J. Molecular Liquids, 2021, vol. 329, pp. 115517. https://doi.org/10.1016/j.molliq.2021.115517
- Rudyak V.Ya., Dashapilov G.R., Minakov A.V. et al. Comparative characteristics of viscosity and rheology of nanofluids with multi-walled and single-walled carbon nanotubes // Diamond Related Mat., 2023, vol. 132, pp. 109616. https://doi.org/10.1016/j.diamond.2022.109616
- Rudyak V.Ya., Minakov A.V., Pryazhnikov M.I. Rheology and thermal conductivity of nanofluids with carbon nanotubes // Adv. Material Sci Research, 2022, vol. 66, pp. 1–92.
- Rudyak V.Ya., Krasnolutsky S.L. Diffusion of nanoparticles in a rarefied gas // Tech. Phys., 2002, vol. 47, pp. 807–813.
- Rudyak V.Ya., Krasnolutskii S.L., Ivanov D.A. The interaction potential of nanoparticles // Doklady Physics, 2012, vol. 57, pp. 33–35.
- Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys., 2000, vol. 112, no. 14, pp. 6472–6486. https://doi.org/10.1063/1.481208
- Batchelor G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles // J. Fluid Mech., 1977, vol. 83, no.01, pp. 97–117. https://doi.org/10.1017/S0022112077001062
- Minakov A.V., Rudyak V.Ya., Pryazhnikov M.I. Systematic experimental study of the viscosity of nanofluids // Heat Transfer Eng., 2020, vol. 42, no. 10, pp. 1–17. https://doi.org/10.1080/01457632.2020.1766250
- Montroll E.V. On the statistical mechanics of transfer processes // Thermodynamics of irreversible processes. M.: IL, 1962. pp. 233–283.
- Lattinger J.M. Theory of thermal transport coefficients // Phys. Rev. A., 1964, vol. 135, no. 6, pp. 1505–1514.
- Rudyak V.Y., Belkin A.A., Ivanov D.A., et al. The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient // High Temp., 2008, vol. 46, pp. 30–39.
- Rudyak V. Diffusion of nanoparticles in gases and liquids // Handbook of Nanoparticles, 2016, pp. 1–21. https://doi.org/10.1007/978-3-319-13188-7_54-1
- Belkin A., Rudyak V., Krasnolutskii S. Molecular dynamics simulation of carbon nanotubes diffusion in water // Mol. Simulation, 2022,vol. 48, no. 9, pp. 752–759. https://doi.org/10.1080/08927022.2022.2053119
- Ikeshoji T., Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface // Mol. Phys., 1994, vol. 81, no. 2, pp. 51–261. https://doi.org/10.1080/00268979400100171
- Evans D.J., Morris G.P. Statistical mechanics of nonequilibrium liquids. Canberra: Australian National University, 2007. 296 p. https://doi.org/10.1016/C2013-0-10633-2
- Muller-Plathe F., A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity // J. Chem. Phys., 1997, vol. 106, no. 14, pp. 6082–6085. https://doi.org/10.1063/1.473271
- Jabbari F., Rajabpour A., Saedodin S. Thermal conductivity and viscosity of nanofluids: A review of recent molecular dynamics studies // Chem. Eng. Sci., 2017, vol. 174, pp. 67–81. https://doi.org/10.1016/j.ces.2017.08.034
- Rudyak V.Yа., Pryazhnikov M.I., Minakov A.V. et al. Comparison of thermal conductivity of nanofluids with single-walled and multi-walled carbon nanotubes // Diamond Related Mat., 2023, vol. 139, pp. 110376.
Supplementary files


