Фазовая структура волновых возмущений, возбуждаемых пульсирующим источником на поверхности раздела потока жидкости конечной глубины и ледяного покрова

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Плавающий ледяной покров определяет динамическое взаимодействие между океаном и атмосферой, влияет на динамику морской поверхности и подповерхностных вод, так как в общем движении по вертикали участвует ледяной покров и вся масса жидкости под ним. В работе исследована фазовая структура волновых полей, возникающих на границе раздела льда и потока однородной жидкости конечной толщины при обтекании локализованного пульсирующего источника возмущений. Ледяной покров моделируется тонкой упругой пластиной, деформации которой малы, и пластина является физически линейной. Получено интегральное представление решения, приведены результаты расчетов дисперсионных зависимостей и фазовых картин для различных параметров волновой генерации. Показано, что основными параметрами, определяющими характеристики амплитудно-фазовых структуру волновых возмущений поверхности ледяного покрова, являются толщина льда, скорость потока, частота пульсаций. Численные расчеты демонстрируют, что при изменении скоростей потока, толщины льда и частоты происходит заметная качественная перестройка фазовых картин возбуждаемых дальних волновых полей на границе раздела льда и жидкости.

Полный текст

Доступ закрыт

Об авторах

В. В. Булатов

Институт проблем механики им. А.Ю. Ишлинского РАН

Автор, ответственный за переписку.
Email: internalwave@mail.ru
Россия, Москва

И. Ю. Владимиров

Институт океанологии им. П.П. Ширшова РАН

Email: iyuvladimirov@rambler.ru
Россия, Москва

Список литературы

  1. Букатов А.Е. Волны в море с плавающим ледяным покровом. Севастополь: ФГБУН МГИ, 2017. 360 с.
  2. Ильичев А.Т. Уединенные волны в моделях гидродинамики. М.: Физматлит, 2003. 256 с.
  3. Squire V.A., Hosking R.J., Kerr A.D., Langhorne P.J. Moving Loads on Ice Plates. Dordrecht: Springer Sci.&Business Media, 1996. 236 pp.
  4. Miropol’skii Yu.Z., Shishkina O.V. Dynamics of Internal Gravity Waves in the Ocean. Boston: Kluwer Acad. Pub., 2001. 406 pp.
  5. Mei C.C., Stiassnie M., Yue D.K.-P. Theory and Applications of Ocean Surface Waves. Advanced Series of Ocean Engineering. Vol. 42. London: World Sci. Pub., 2018. 1240 pp.
  6. The Ocean in Motion / Ed. by Velarde M.G., Tarakanov R.Yu., Marchenko A.V. Cham: Springer Nature, 2018. 625 pp.
  7. Козин В.М., Погорелова А.В., Земляк В.Л., Верещагин В.Ю., Рогожникова Е.Г., Кипин Д.Ю., Матюшина А.А. Экспериментально-теоретические исследования зависимости параметров распространяющихся в плавающей пластине изгибно-гравитационных волн от условий их возбуждения. Новосибирск: Изд-во СО РАН, 2016. 222 с.
  8. Morozov E.G. Oceanic Internal Tides. Observations, Analysis and Modeling. Berlin: Springer, 2018. 317 pp.
  9. Marchenko A.V., Morozov E.G., Muzylev S.V., Shestov A.S. Interaction of short internal waves with the ice cover in an Arctic fjord // Oceanology. 2010. V. 50(1). P. 18–27.
  10. Marchenko A.V., Morozov E.G., Muzylev S.V., Shestov A.S. Short-period internal waves under an ice cover in Van Mijen Fjord, Svalbard //Advances in Meteorol. 2011. V. 2011. Art. ID 573269.
  11. Marchenko A., Morozov E., Muzylev S. Measurements of sea ice flexural stiffness by pressure characteristics of flexural-gravity waves // Ann. Glaciology. 2013. V. 54. P. 51–60.
  12. Marchenko A.V., Morozov E.G. Surface manifestations of the waves in the ocean covered with ice // Rus. J. Earth Sci. 2016. V. 16 (1). ES1001.
  13. Morozov E.G., Marchenko A.V., Filchuk K.V., Kowalik Z., Marchenko N.A., Ryzhov I.V. Sea ice evolution and internal wave generation due to a tidal jet in a frozen sea // Appl. Ocean Res. 2019. V. 87. P. 179–191.
  14. Morozov E.G., Pisarev S.V. Internal tides at the Arctic latitudes (numerical experiments) // Oceanology. 2002. V. 42(2). P. 153–161.
  15. Morozov E.G., Zuev O.A., Zamshin V.V., Krechik V.A., Ostroumova S.A., Frey D.I. Observations of icebergs in Antarctic cruises of the R/V “Akademik Mstislav Keldysh” // Rus. J. Earth Sci. 2022. V. 2. P. 1–5.
  16. Булатов В.В., Владимиров И.Ю. Силовое воздействие потока бесконечно глубокой жидкости на источник под ледяным покровом // Фундаментальная и прикладная гидрофизика. 2023. Т. 16. №3. С. 120–128.
  17. Dinvay E., Kalisch H., Parau E.I. Fully dispersive models for moving loads on ice sheets // J. Fluid Mech. 2019. V. 876. P. 122–149.
  18. Sturova I.V. Radiation of waves by a cylinder submerged in water with ice floe or polynya // J. Fluid Mech. 2015. V. 784. P. 373–395.
  19. Das S., Sahoo T., Meylan M.H. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity // Proc. R. Soc. A. 2018. V. 474. P. 20170223.
  20. Pogorelova A.V., Zemlyak V.L., Kozin V.M. Moving of a submarine under an ice cover in fluid of finite depth // J. Hydrodyn. 2019. V. 31(3). P. 562–569.
  21. Khabakhpasheva T., Shishmarev K., Korobkin A. Large-time response of ice cover to a load moving along a frozen channel // Appl. Ocean Res. 2019. V. 86. P. 154–165.
  22. Ильичев А.Т. Эффективные длины волн огибающей на поверхности воды под ледяным покровом: малые амплитуды и умеренные глубины // ТМФ. 2021. Т. 28. №3. С. 387–408.
  23. Савин А.С., Савин А.А. Пространственная задача о возмущениях ледяного покрова движущимся в жидкости диполем // Изв. РАН. МЖГ. 2015. №5. С. 16–23.
  24. Стурова И.В. Движение нагрузки по ледяному покрову с неравномерным сжатием // Изв. РАН. МЖГ. 2021. №4. С. 63–72.
  25. Ильичев А.Т., Савин А.С., Шашков А.Ю. Траектории жидких частиц в поле темного солитона в жидкости под ледяным покровом // Изв. РАН. МЖГ. 2023. №6. С. 110–120.
  26. Маленко Ж.В., Ярошенко А.А. Трехмерные изгибно-гравитационные волны в плавающем ледяном покрове от движущегося источника возмущений // ПММ. 2023. Т. 87. №6. С. 1037–1048.
  27. Булатов В.В., Владимиров И.Ю. Дальние поля на поверхности на поверхности раздела бесконечно глубокого океана и ледяного покрова, возбуждаемые локализованным источником // Изв. РАН. ФАО. 2023. Т. 59. №3. С. 346–351.
  28. Булатов В.В., Владимиров Ю.В. Волны в стратифицированных средах. М.: Наука, 2015. 735 с.
  29. Лайтхил Дж. Волны в жидкостях. М.: Мир, 1981. 598 с.
  30. Borovikov V.A. Uniform Stationary Phase Method. London: IEE Electromagnetic Waves. Ser. 40, 1994. 233 pp.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Дисперсионные кривые : линии 1–5 –

Скачать (24KB)
3. Рис. 2. Дисперсионные кривые: линии 1,2 – : линии 3–8 – :

Скачать (40KB)
4. Рис. 3. Дисперсионные кривые : линии

Скачать (23KB)
5. Рис. 4. Линии равной фазы – волны распространяются от источника

Скачать (29KB)
6. Рис. 5. Линии равной фазы – волны бегут вверх по потоку

Скачать (62KB)
7. Рис. 6. Линии равной фазы – волны распространяются от источника

Скачать (30KB)
8. Рис. 7. Линии равной фазы – волны бегут вниз по потоку

Скачать (48KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».