Задача уклонения траекторий конфликтно управляемых систем от разреженных терминальных множеств
- Авторы: Югай Л.П.1
-
Учреждения:
- Узбекский государственный университет физической культуры и спорта
- Выпуск: Том 88, № 1 (2024)
- Страницы: 67-78
- Раздел: Статьи
- URL: https://journals.rcsi.science/0032-8235/article/view/260204
- DOI: https://doi.org/10.31857/S0032823524010058
- EDN: https://elibrary.ru/YUOZHZ
- ID: 260204
Цитировать
Аннотация
Для нелинейных конфликтно управляемых процессов (дифференциальных игр) рассматривается задача уклонения траекторий в постановке Л.С. Понтрягина и Е.Ф. Мищенко. Терминальное множество имеет разреженную структуру. В отличие от известных работ оно может иметь предельную точку. Получены новые достаточные условия и методы уклонения, позволяющие решить задачи уклонения траекторий нелинейных колебательных систем. В качестве примера приведено решение задачи о раскачке обобщенного математического маятника.
Ключевые слова
Полный текст

Об авторах
Л. П. Югай
Узбекский государственный университет физической культуры и спорта
Автор, ответственный за переписку.
Email: yugailp@mail.ru
Узбекистан, Чирчик
Список литературы
- Понтрягин Л.С. Избранные труды. М.: МАКС Пресс, 2004. 552 с.
- Айзекс Р. Дифференциальные игры. М.: Мир., 1967. 480 с.
- Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Наука, 1974. 496 с.
- Мищенко Е.Ф., Никольский М.С., Сатимов Н. Задача уклонения от встречи в дифференциальных играх многих лиц// Тр. МИАН. 1977. Вып. 143. С. 105–128.
- Мищенко Е.Ф., Сатимов Н. Задача об уклонении от встречи в дифференциальных играх с нелинейными управлениями // Дифф. ур-я. 1973. Т. 9. № 10. С. 1792–1797.
- Черноусько Ф.Л., Акуленко Л.Д., Соколов Б.Н. Управление колебаниями. М.: Наука. 1980. 484 с.
- Reshmin S.A., Chernousko F.L. Properties of the time-optimal feedback control for a pendulum-like system // JOTA. 2014. V.163. № 1. P. 230–252.
- Пилипенко Ю.В., Чикрий А.А. Колебательные конфликтно управляемые процессы// ПММ. 1993. Т. 57. Вып. 3. С. 3–14.
- Bolotnik N.N., Nunuparov A.M., Chashchukhin V.G. Capsule-type vibration-driven robot an electromagnetic actuator and an opposing spring: dynamics and control of motion // J. Comput.&Syst. Sci. Int. 2016. V. 55. № 6. P. 986–1000.
- Гусятников П.Б., Югай Л.П. Об одной задаче убегания в нелинейных дифференциальных играх с терминальным множеством сложной структуры // Изв. АН СССР. Техн. киберн. 1977. № 2. С. 8–13.
- Мамадалиев Н. Об одной задаче преследования с интегральными ограничениями на управления игроков// Сиб. матем. ж. 2015. Т. 56. № 1. С. 129–148.
- Югай Л.П. Задача уклонения траекторий от разреженного терминального множества // Докл. РAH. Матем. Инф. Проц. упр. 2020. Т. 495. С. 80–84. doi: 10.31857/S268695432006020X
- Yugay L.P. Nonlinear integral inequalities and differential games of avoiding encounter // in: Recent Developments in Automatic Control Systems. Alsbergvej: River Pub., 2022. P. 97–111.
- Лейхтвейс К. Выпуклые множества. М.: Наука, 1985. 336 с.
- Половинкин Е.С. Многозначный анализ и дифференциальные включения. М.: Физматлит. 2014. 524 с.
- Куржанский А.Б. Управление и наблюдение в условиях неопределенности. М.: Наука, 1977. 392 с.
- Субботин А.И., Ченцов А.Г. Оптимизации гарантии в задачах управления. М.: Наука, 1981. 288 с.
Дополнительные файлы
