Peculiarities of Lamb Waves Propagating in Functionally Graded Layers
- Autores: Kasparova E.A.1, Kuznetsov S.V.1
-
Afiliações:
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- Edição: Volume 88, Nº 3 (2024)
- Páginas: 483-493
- Seção: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/269265
- DOI: https://doi.org/10.31857/S0032823524030108
- EDN: https://elibrary.ru/YZYIVX
- ID: 269265
Citar
Resumo
Propagation of harmonic Lamb waves in plates made of functionally graded materials (FGM) with transverse inhomogeneity is studied by the modified Cauchy six-dimensional formalism. For arbitrary transverse inhomogeneity a closed form dispersion equation is derived. Dispersion relations for materials with different kinds of inhomogeneity are obtained and compared.
Palavras-chave
Texto integral

Sobre autores
E. Kasparova
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Email: kuzn-sergey@yandex.ru
Rússia, Moscow
S. Kuznetsov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: kuzn-sergey@yandex.ru
Rússia, Moscow
Bibliografia
- Liu G.R., Tani J., Ohyoshi T. Lamb waves in a functionally gradient material plates and its transient response. Pt. 1: Theory; Pt. 2: Calculation result // Trans. Jap. Soc. Mech. Eng., 1991, vol. 57A, pp. 131–142.
- Koizumi M. The concept of FGM. // Ceramic Trans.: Funct. Gradient Mater., 1993, vol. 34, pp. 3–10.
- Liu G.R., Tani J. Surface waves in functionally gradient piezoelectric plates // Trans. ASME, 1994, vol. 116, pp. 440–448.
- Miyamoto Y. et al. Functionally Graded Materials. London: Kluwer Acad. Pub., 1999.
- Han X., Liu G.R., Lam K.Y., Ohyoshi T. A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization // J. Sound Vibr., 2000, vol. 236, pp. 307–21.
- Vlasie V., Rousseau M. Guide modes in a plane elastic layer with gradually continuous acoustic properties // NDT&E Int., 2004, vol. 37, pp. 633–644.
- Baron C., Naili S. Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization // J. Acoust. Soc. Am., 2010, vol. 127(3), pp. 1307–1317.
- Amor M.B., Ghozlen M.H.B. Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method // Ultrasonics, 2015, vol. 55, pp. 10–114.
- Nanda N., Kapuria S. Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories // Composite Struct., 2015, vol. 132, pp. 310–320.
- Kuznetsov S.V. Surface waves of non-Rayleigh type // Quart. Appl. Math., 2003, vol. 61(3), pp. 575–582.
- Li S., Brun M., Irini D.-M. et al. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comput. Geotech., 2019, vol. 109, pp. 69–81.
- Li S., Brun M., Irini D.-M. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Eur. J. Environ. Civ. Eng., 2020, vol. 24, pp. 2400–2421.
- Li S., Brun M., Irini D.-M. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comput. Geotech., 2021, vol. 131, art.no. 103808.
- Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion, 2019, vol. 84, pp. 1–7.
- Kuznetsov S.V. Cauchy formalism for Lamb waves in functionally graded plates // J. Vibr. Control, 2019, vol. 25(6), pp. 1227–1232.
- Ilyashenko A.V., Kuznetsov S.V. Theoretical aspects of applying Lamb waves to nondestructive testing of layered anisotropic media // Russ. J. Nondestruct. Test, 2017, vol. 53, pp. 243–259.
- Chao X., Zexing Y. Numerical simulation of elastic wave propagation in functionally graded cylinders using time-domain spectral finite element method // Adv. Mech. Eng., 2017, vol. 9(11), pp. 1–17.
- Lefebvre J.E., Zhang V., Gazalet J. et al. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach // IEEE T Ultrason. Ferr., 2001, vol. 48, pp. 1332–1340.
- Qian Z.H., Jin F., Wang Z.K., Kishimoto K. Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness // Int. J. Eng. Sci., 2007, vol. 45, pp. 455–466.
- Djeran-Maigre I., Kuznetsov S.V. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys., 2014, vol. 60, pp. 200–207.
- Dudchenko A.V., Dias D., Kuznetsov S.V. Vertical wave barriers for vibration reduction // Arch. Appl. Mech., 2020, vol. 91(1), pp. 257–276.
- Kuznetsov S.V., Terentieva E.O. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys., 2015, vol. 61, pp. 356–367.
- Il’yasov K.K., Kravtsov A.V., Kuznetsov S.V. et al. Exterior 3D Lamb problem: Harmonic load distributed over a surface // Mech. Solids, 2016, vol. 51, pp. 39–45.
- Bratov V.A., Ilyashenko A.V., Kuznetsov S.V. et al. Homogeneous horizontal and vertical seismic barriers // Mater. Phys. Mech., 2020, vol. 44, pp. 61–65.
Arquivos suplementares
