On the Theory of Shock Waves in Isotropic Hardening Plastic Media

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on the thermomechanical model of plastic deformation of an elastically compressible isotropic hardening medium, the system of relations for describing plastic shock waves of finite amplitude is obtained, which satisfies the maximum entropy production principle at the front of strong discontinuity. A classification of admissible shock-wave transitions is performed within the framework of the model of isotropic hardening under the von Mises plasticity condition.

Sobre autores

V. Sadovskii

Institute of Computational Modelling SB RAS

Autor responsável pela correspondência
Email: sadov@icm.krasn.ru
Russia, Krasnoyarsk

Bibliografia

  1. Bykovtsev G.I., Kretova L.D. Shock wave propagation in elastic-plastic media // JAMM, 1972, vol. 36, no. 1, pp. 94–103.
  2. Burenin A.A., Bykovtsev G.I., Rychkov V.A. Surfaces of velocity discontinuities in the dynamics of irreversibly compressible media // Problems of Continuum Mechanics (Problemy mekhaniki sploshnyh sred: Sb. nauch. tr.). Vladivostok: IACP FEB RAS, 1996. pp. 116–127. (in Russian)
  3. Burenin A.A., Dudko O.V., Semenov K.T. Conditions for the existence of discontinuity surfaces of irreversible strains in elastoplastic media // J. Appl. Mech. Tech. Phys., 2009, vol. 50, no. 5, pp. 878–885.
  4. Sadovskii V.M. Discontinuous Solutions in Dynamic Elastic-Plastic Problems. Moscow: Fizmatlit, 1997. 208 p. (in Russian)
  5. Sadovskii V.M. Toward a theory of the propagation of elastoplastic waves in strain-hardening media // J. Appl. Mech. Tech. Phys., 1994, vol. 35, no. 5, pp. 798–804.
  6. Sadovskii V.M. Elastoplastic waves of strong discontinuity in linearly hardening media // Mech. Solids, 1997, vol. 32, no. 6, pp. 88–94.
  7. Kulikovskii A.G. Multi-parameter fronts of strong discontinuities in continuum mechanics // J. Appl. Math. Mech., 2011, vol. 75, no. 4, pp. 378–389.
  8. Kulikovskii A.G., Chugainova A.P. Shock waves in elastoplastic media with the structure defined by the stress relaxation process // Proc. Steklov Inst. Math., 2015, vol. 289, pp. 167–182.
  9. Kulikovskii A.G., Chugainova A.P. Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations // Comput. Math. Math. Phys., 2016, vol. 56, no. 4, pp. 637–649.
  10. Sadovskii V.M. To the analysis of the structure of finite-amplitude transverse shock waves in a plastic medium // Mech. Solids, 2003, vol. 38, no. 6, pp. 31–39.
  11. Sadovskii V.M. On the theory of shock waves in compressible plastic media // Mech. Solids, 2001, vol. 36, no. 5, pp. 67–74.
  12. Mosolov P.P., Myasnikov V.P. Mechanics of Rigid-Plastic Media. Moscow: Nauka, 1981. 208 p. (in Russian)
  13. Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Experimental Profiles of Shock Waves in Condensed Matter. Moscow: Fizmatlit, 2008. 248 p. (in Russian)
  14. Kanel G.I. Shock Waves in Solid State Physics. Moscow: Fizmatlit, 2018. 208 p. (in Russian)

Declaração de direitos autorais © В.М. Садовский, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies