Relaxation of residual stresses in rotating cylinders with incisions of various shapes under creep conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem of relaxation of residual stresses under conditions of high-temperature creep in surface-hardened cylinders with incisions of semicircular, square and V-shaped profiles cantilevered on an absolutely rigid rotating disk is considered and numerically solved. A series of variable calculations has been performed for cylinders made of EI698 alloy with a radius of 3.76 mm and a length of 150 mm, hardened by shot peening: smooth, with a semicircular incision with a radius of 0.1 and 0.3 mm, a square incision with a depth of 0.1 mm, with a V-shaped incision with a depth of 0.1 mm and an opening angle of 5°, 10°, 20° and 30°. In accordance with the technology of advanced surface plastic deformation, the incisions were applied to a pre-hardened smooth sample. First, the stress-strain state in a smooth sample was determined, and then the problem of redistributing residual stresses after incision application was solved in the elastic formulation for a semicircular incision and in the elastoplastic formulation for cylinders with square and V-shaped incisions. When solving boundary value relaxation problems of residual stresses, the rotation speed and the location of the incision varied — the distance from it to the cantilevered end of the cylinder. The relaxation of residual stresses was calculated on a time base of 300 hours for a smooth cylinder for comparison with a similar solution based on the grid method and on a time base of 100 hours for cylinders with incisions. The flow theory was chosen as the law of creep. The parameters of the law are determined from experimental data on creep deformation for the EI698 alloy at a temperature of 700 °C. The stages of solving the problem correspond to the full loading cycle: “hardening at 20 °C — force load from rotation — temperature load up to 700 °C — creep for 100/300 hours — force unloading — temperature unloading up to 20 °C”. When solving all the boundary value problems, at the end of the loading cycle, a significant level of compressive residual stresses is observed on the incision surface, which is a positive fact of using plastic surface deformation technology even under conditions of high-temperature creep. The results of calculations of the kinetics of residual stresses during creep are presented in graphical and tabular forms.

About the authors

V. P. Radchenko

Samara State Technical University

Author for correspondence.
Email: radchenko.vp@samgtu.ru
Samara, Russia

V. E. Glebov

Samara State Technical University

Email: glebov.ve@samgtu.ru
Samara, Russia

References

  1. Birger I.A. Residual Stresses. Moscow: Mashgiz, 1963. 232 p. (in Russian)
  2. Grinchenko I.G. Hardening of Parts Made of Heat-Resistant and Titanium Alloys. Moscow: Mashinostroenie, 1971. 120 p. (in Russian)
  3. Kudryavtsev I.V. Surface Work-Hardening to Improve the Strength and Durability of Machine Parts by Surface Plastic Deformation. Moscow: Mashinostroenie, 1969. 100 p. (in Russian)
  4. Nozhnitskii Yu.A., Fishgoit A.V., Tkachenko R.I. et al. Development and application of new methods for hardening GTE parts based on plastic deformation of surface layers // Vestnik Dvigatelestroeniya, 2006, no. 2, pp. 8–16. (in Russian)
  5. Sulima G.N., Shuvakov V.A., Yagodkin Yu.D. Surface Layer and Performance Properties of Machine Parts. Moscow: Mashinostroenie, 1988. 240 p. (in Russian)
  6. Odintsov L.G. Hardening and Finishing of Parts by Surface Plastic Deformation. Moscow: Mashinostroenie, 1987. 328 p. (in Russian)
  7. Ivanov S.I., Shatunov M.P., Pavlov V.F. Influence of residual stresses on the endurance of notched specimens // Problems of Strength of Aircraft Structural Elements, Vol. 1. Kuibyshev: KuAI, 1974. P. 88–95. (in Russian)
  8. Mitryaev K.F., Egorov V.I., Malkov G. F. et al. Increasing the fatigue strength of heat-resistant materials by diamond burnishing of part surfaces // Residual Stresses, no. 53. Kuibyshev: KuAI, 1971. P. 151–159. (in Russian)
  9. Pavlov V.F., Bukatyi A.S., Semenova O.Yu. Prediction of the endurance limit of surface-hardened parts with stress concentrators // Vestnik Mashinostroeniya, 2019, no. 1, pp. 3–7. (in Russian)
  10. Pavlov V.F., Kirpichev V.A., Vakulyuk V.S. Prediction of Fatigue Resistance of Surface-Hardened Parts by Residual Stresses. Samara: SNC RAS Publishing House, 2012. 125 p. (in Russian)
  11. Sazanov V.P. Study of the patterns of fatigue crack arrest in a cylindrical notched specimen // Vestnik Samarskogo Universiteta. Aerokosmicheskaya Tekhnika, Tekhnologii i Mashinostroenie, 2018, vol. 17, no. 1, pp. 160–169. https://doi.org/10.18287/2541-7533-2018-17-1-160-169
  12. Influence of shot peening and thermal exposure on residual stresses and endurance limit of notched specimens made of V95 and D16T alloys // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya: Fiziko-Matematicheskie Nauki, 2011, vol. 3, no. 24. pp. 181–184. (in Russian)
  13. You C., Achintha M., He B.Y. et al. A numerical study of the effects of shot peening on the short crack growth behaviour in notched geometries under bending fatigue tests // Int. J. of Fatigue, 2017, vol. 103, pp. 99–111. http://dx.doi.org/10.1016/j.ijfatigue.2017.05.023
  14. Soyama H. Comparison between Shot Peening, Cavitation Peening and Laser Peening by Observation of Crack Initiation and Crack Growth in Stainless Steel // Metals, 2019, vol. 10, no. 1, pp. 63. http://dx.doi.org/10.3390/met10010063
  15. Zhao X., Sun Z., Xu D. et al. Local Fatigue Strength Evaluation of Shot Peened 40Cr Notched Steel // Metals, 2018, vol. 8, no. 9, pp. 681. http://dx.doi.org/10.3390/met8090681
  16. Takahashi K., Osedo H., Suzuki T. et al. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening // Engineering Fracture Mechanics, 2018, vol. 193, pp. 151–161. http://dx.doi.org/10.1016/j.engfracmech.2018.02.013
  17. Evaluating the influence of residual stresses and surface damage on fatigue life of nickel superalloys // Int. J. of Fatigue, 2017, vol. 105, pp. 27–33. http://dx.doi.org/10.1016/j.ijfatigue.2017.08.015
  18. Effect of shot peening on short crack propagation in 300M steel // Int. J. of Fatigue, 2020, vol. 131, pp. 105346. http://dx.doi.org/10.1016/j.ijfatigue.2019.105346
  19. Nag Chaundhury J. Effect of heat treatment, pre-stress and surface hardening on fracture toughness of micro-alloyed steel // J. of Materials Engin.& Perform., 2013, vol. 23, no. 1, pp. 152–168. http://dx.doi.org/10.1007/s11665-013-0709-6
  20. Radchenko V.P., Morozov A.P. Experimental study of the influence of shot peening, thermal exposure, and high-cycle fatigue tests on the physical-mechanical state of the hardened layer of cylindrical specimens made of V95 and D16T alloys // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya: Fiz.-Matem. Nauki, 2010, vol. 5, no. 21, pp. 222–228. (in Russian)
  21. Radchenko V.P., Morozov A.P., Lunin V.V. Study of the kinetics of physical-mechanical parameters of hardened specimens made of V95 and D16T alloys due to thermal exposure and high-cycle fatigue tests // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya: Fiziko-Matematicheskie Nauki, 2012. No. 1 (26). P. 123–131. (in Russian)
  22. Wildeis A., Christ H.-J., Brandt R. Influence of Residual Stresses on the Crack Initiation and Short Crack Propagation in a Martensitic Spring Steel // Metals, 2022, vol. 12, no. 7, pp. 1085. https://doi.org/10.3390/met12071085.
  23. Wang C., Lai Y., Wang L. et al. Dislocation-based study on the influences of shot peening on fatigue resistance // Surface and Coatings Technology, 2020, vol. 383, no. 7, pp. 125247. http://dx.doi.org/10.1016/j.surfcoat.2019.125247
  24. Qu S., Duan C., Hu X. et al. Effect of shot peening on microstructure and contact fatigue crack growth mechanism of shaft steel // Materials Chemistry and Physics, 2021, vol. 274, no. 9, pp. 125116. http://dx.doi.org/10.1016/j.matchemphys.2021.125116
  25. Recent Advances in Laser Surface Hardening: Techniques, Modeling Approaches, and Industrial Applications // Crystals, 2024, vol. 14, no. 8, pp. 726. http://dx.doi.org/10.3390/cryst14080726
  26. Czupryński A., Janicki D., Górka J. et al. High-Power Diode Laser Surface Transformation Hardening of Ferrous Alloys // Materials, 2022, vol. 15, no. 5, pp. 1915. http://dx.doi.org/10.3390/ma15051915
  27. Induction Hardening of Carbon Steel Material: The Effect of Specimen Diameter // Advanced Materials Research, 2014, vol. 911, pp. 210–214. http://dx.doi.org/10.4028/www.scientific.net/AMR.911.210
  28. Świetlicki A., Szala M., Walczak M. Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials—A Short Review // Materials, 2022, vol. 15, no. 7, pp. 2476. http://dx.doi.org/10.3390/ma15072476
  29. Jin J., Wang W., Chen X. Microstructure and Mechanical Properties of Ti + N Ion Implanted Cronidur30 Steel // Materials, 2019, vol. 12, no. 3, pp. 427. http://dx.doi.org/10.3390/ma12030427
  30. Hardening and Strain Localisation in Helium-Ion-Implanted Tungsten // Sci Rep., 2019, vol. 9, pp. 18354. https://www.nature.com/articles/s41598-019-54753-3
  31. Kolotnikova O.V. Effectiveness of hardening by methods of surface plastic deformation for parts operating at elevated temperatures // Problemy Prochnosti, 1983, no. 2. pp. 112–114. (in Russian)
  32. Radchenko V.P., Saushkin M.N. A direct method for solving the boundary value problem of residual stress relaxation in a hardened cylindrical product under creep conditions // J. of Appl. Mech.&Techn. Phys. (PMTF), 2009, vol. 50, no. 6, pp. 90–99. (in Russian)
  33. Radchenko V.P., Kocherov E.P., Saushkin M.N. et al. Experimental and theoretical study of the influence of tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions // J. of Appl. Mech.&Tech. Phys. (PMTF), 2015, vol. 56, no. 2, pp. 313–320. http://dx.doi.org/10.1134/S0021894415020170
  34. Radchenko V.P., Derevyanka E.E. Kinetics of residual stresses in thin-walled cylindrical specimens after bilateral surface hardening under creep conditions with rigid constraints on angular and axial linear displacements // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, no. 2, pp. 227–240. https://doi.org/10.18500/1816-9791-2023-23-2-227-240
  35. Derevyanka E.E., Radchenko V.P., Tsvetkov V.V. Relaxation of residual stresses in a surface-hardened cylinder under creep conditions with rigid constraints on linear and angular strains // Mechanics of Solids (Izvestiya RAN. MTT), 2021, no. 3, pp. 118–127. http://dx.doi.org/10.31857/S057232992103003X
  36. Radchenko V.P., Liberman A.E., Blokhin O.L. Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions // Vestnik Samarskogo Gos. Tekh. Univ. Fiz.-Mat. Nauki, 2022, vol. 26, no. 1, pp. 119–139. http://dx.doi.org/10.14498/vsgtu1884
  37. Radchenko V.P., Tsvetkov V.V., Saushkin M.N. Relaxation of residual stresses in a hardened cylinder under creep conditions under loading by an axial force, torque, and internal pressure // J. of Appl. Mech.&Tech. Phys. (PMTF), 2020, vol. 61, no. 4, pp. 96–107. http://dx.doi.org/10.15372/PMTF20200412
  38. Radchenko V.P., Saushkin M.N. Creep and Relaxation of Residual Stresses in Hardened Structures. Moscow: Mashinostroenie-1, 2005. 226 p. (in Russian)
  39. Radchenko V., Glebov V.A. Method for Calculating the Relaxation of Residual Creep Stresses in a Surface-Hardened Cylinder with a Series of Periodically Arranged Semicircular Incisions under Thermal Exposure Conditions // Mechanics of Solids, 2024, vol. 59, no. 7, pp. 3735–3746. http://dx.doi.org/10.1134/S0025654424606293
  40. Влияние геометрической формы надреза на релаксацию остаточных напряжений в поверхностно упрочненном цилиндре при термоэкспозиции // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2025. Т. 25, вып. 3. С. 391–405. doi: 10.18500/1816-9791-2025-25-3-391-405, EDN: MQEXGM
  41. Sazanov V.P., Semenova O.Yu., Kirpichev V.A. et al. Mathematical modeling of initial deformations in surface-hardened parts when choosing a witness sample // Vestnik UGATU, 2016, vol. 20, no. 3, pp. 31–37. (in Russian)
  42. Pavlov V.F., Stolyarov A.K., Kirpichev V.A. et al. Calculation of Residual Stresses in Parts with Stress Concentrators by Initial Strains. Samara: SNC RAS Publishing House, 2008. 124 p. (in Russian)
  43. Radchenko V.P., Shishkin D.M. Numerical method for calculating the stress-strain state in a prismatic surface-hardened specimen with a notch in elastic and elastoplastic formulations // Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya: Matematika. Mekhanika. Informatika, 2021, vol. 21, no. 4, pp. 503–519. http://dx.doi.org/10.18500/1816-9791-2021-21-4-503-519
  44. Radchenko V.P., Shishkin D.M., Saushkin M.N. Numerical solution of the problem of the stress-strain state of a surface-hardened prismatic specimen with a V-shaped notch in elastic and elastoplastic formulations // Vestnik SamGTU. Seriya: Fiz.-Mat. Nauki, 2023, vol. 27, no. 3, pp. 491–508. https://doi.org/10.14498/vsgtu2017
  45. Bulygin I.P., Vlasova P.T., Gorbodei A.T. et al. Atlas of Tensile Diagrams at High Temperatures, Creep Curves and Long-Term Strength of Steels and Alloys for Engines. Moscow: State Publishing House of the Defense Industry, 1957. 173 p. (in Russian)
  46. Rabotnov Yu.N. Creep of Structural Elements. Moscow: Nauka, 1966. 752 p. (In Russian).
  47. Radchenko V.P., Eremin Yu.A. Rheological Deformation and Fracture of Materials and Structural Elements. Moscow: Mashinostroenie-1, 2004. 265 p. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).