Relaxation of residual stresses in rotating cylinders with incisions of various shapes under creep conditions
- Authors: Radchenko V.P.1, Glebov V.E.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 89, No 6 (2025)
- Pages: 1057-1072
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/364155
- DOI: https://doi.org/10.7868/S3034575825060139
- ID: 364155
Cite item
Abstract
The problem of relaxation of residual stresses under conditions of high-temperature creep in surface-hardened cylinders with incisions of semicircular, square and V-shaped profiles cantilevered on an absolutely rigid rotating disk is considered and numerically solved. A series of variable calculations has been performed for cylinders made of EI698 alloy with a radius of 3.76 mm and a length of 150 mm, hardened by shot peening: smooth, with a semicircular incision with a radius of 0.1 and 0.3 mm, a square incision with a depth of 0.1 mm, with a V-shaped incision with a depth of 0.1 mm and an opening angle of 5°, 10°, 20° and 30°. In accordance with the technology of advanced surface plastic deformation, the incisions were applied to a pre-hardened smooth sample. First, the stress-strain state in a smooth sample was determined, and then the problem of redistributing residual stresses after incision application was solved in the elastic formulation for a semicircular incision and in the elastoplastic formulation for cylinders with square and V-shaped incisions. When solving boundary value relaxation problems of residual stresses, the rotation speed and the location of the incision varied — the distance from it to the cantilevered end of the cylinder. The relaxation of residual stresses was calculated on a time base of 300 hours for a smooth cylinder for comparison with a similar solution based on the grid method and on a time base of 100 hours for cylinders with incisions. The flow theory was chosen as the law of creep. The parameters of the law are determined from experimental data on creep deformation for the EI698 alloy at a temperature of 700 °C. The stages of solving the problem correspond to the full loading cycle: “hardening at 20 °C — force load from rotation — temperature load up to 700 °C — creep for 100/300 hours — force unloading — temperature unloading up to 20 °C”. When solving all the boundary value problems, at the end of the loading cycle, a significant level of compressive residual stresses is observed on the incision surface, which is a positive fact of using plastic surface deformation technology even under conditions of high-temperature creep. The results of calculations of the kinetics of residual stresses during creep are presented in graphical and tabular forms.
About the authors
V. P. Radchenko
Samara State Technical University
Author for correspondence.
Email: radchenko.vp@samgtu.ru
Samara, Russia
V. E. Glebov
Samara State Technical University
Email: glebov.ve@samgtu.ru
Samara, Russia
References
- Birger I.A. Residual Stresses. Moscow: Mashgiz, 1963. 232 p. (in Russian)
- Grinchenko I.G. Hardening of Parts Made of Heat-Resistant and Titanium Alloys. Moscow: Mashinostroenie, 1971. 120 p. (in Russian)
- Kudryavtsev I.V. Surface Work-Hardening to Improve the Strength and Durability of Machine Parts by Surface Plastic Deformation. Moscow: Mashinostroenie, 1969. 100 p. (in Russian)
- Nozhnitskii Yu.A., Fishgoit A.V., Tkachenko R.I. et al. Development and application of new methods for hardening GTE parts based on plastic deformation of surface layers // Vestnik Dvigatelestroeniya, 2006, no. 2, pp. 8–16. (in Russian)
- Sulima G.N., Shuvakov V.A., Yagodkin Yu.D. Surface Layer and Performance Properties of Machine Parts. Moscow: Mashinostroenie, 1988. 240 p. (in Russian)
- Odintsov L.G. Hardening and Finishing of Parts by Surface Plastic Deformation. Moscow: Mashinostroenie, 1987. 328 p. (in Russian)
- Ivanov S.I., Shatunov M.P., Pavlov V.F. Influence of residual stresses on the endurance of notched specimens // Problems of Strength of Aircraft Structural Elements, Vol. 1. Kuibyshev: KuAI, 1974. P. 88–95. (in Russian)
- Mitryaev K.F., Egorov V.I., Malkov G. F. et al. Increasing the fatigue strength of heat-resistant materials by diamond burnishing of part surfaces // Residual Stresses, no. 53. Kuibyshev: KuAI, 1971. P. 151–159. (in Russian)
- Pavlov V.F., Bukatyi A.S., Semenova O.Yu. Prediction of the endurance limit of surface-hardened parts with stress concentrators // Vestnik Mashinostroeniya, 2019, no. 1, pp. 3–7. (in Russian)
- Pavlov V.F., Kirpichev V.A., Vakulyuk V.S. Prediction of Fatigue Resistance of Surface-Hardened Parts by Residual Stresses. Samara: SNC RAS Publishing House, 2012. 125 p. (in Russian)
- Sazanov V.P. Study of the patterns of fatigue crack arrest in a cylindrical notched specimen // Vestnik Samarskogo Universiteta. Aerokosmicheskaya Tekhnika, Tekhnologii i Mashinostroenie, 2018, vol. 17, no. 1, pp. 160–169. https://doi.org/10.18287/2541-7533-2018-17-1-160-169
- Influence of shot peening and thermal exposure on residual stresses and endurance limit of notched specimens made of V95 and D16T alloys // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya: Fiziko-Matematicheskie Nauki, 2011, vol. 3, no. 24. pp. 181–184. (in Russian)
- You C., Achintha M., He B.Y. et al. A numerical study of the effects of shot peening on the short crack growth behaviour in notched geometries under bending fatigue tests // Int. J. of Fatigue, 2017, vol. 103, pp. 99–111. http://dx.doi.org/10.1016/j.ijfatigue.2017.05.023
- Soyama H. Comparison between Shot Peening, Cavitation Peening and Laser Peening by Observation of Crack Initiation and Crack Growth in Stainless Steel // Metals, 2019, vol. 10, no. 1, pp. 63. http://dx.doi.org/10.3390/met10010063
- Zhao X., Sun Z., Xu D. et al. Local Fatigue Strength Evaluation of Shot Peened 40Cr Notched Steel // Metals, 2018, vol. 8, no. 9, pp. 681. http://dx.doi.org/10.3390/met8090681
- Takahashi K., Osedo H., Suzuki T. et al. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening // Engineering Fracture Mechanics, 2018, vol. 193, pp. 151–161. http://dx.doi.org/10.1016/j.engfracmech.2018.02.013
- Evaluating the influence of residual stresses and surface damage on fatigue life of nickel superalloys // Int. J. of Fatigue, 2017, vol. 105, pp. 27–33. http://dx.doi.org/10.1016/j.ijfatigue.2017.08.015
- Effect of shot peening on short crack propagation in 300M steel // Int. J. of Fatigue, 2020, vol. 131, pp. 105346. http://dx.doi.org/10.1016/j.ijfatigue.2019.105346
- Nag Chaundhury J. Effect of heat treatment, pre-stress and surface hardening on fracture toughness of micro-alloyed steel // J. of Materials Engin.& Perform., 2013, vol. 23, no. 1, pp. 152–168. http://dx.doi.org/10.1007/s11665-013-0709-6
- Radchenko V.P., Morozov A.P. Experimental study of the influence of shot peening, thermal exposure, and high-cycle fatigue tests on the physical-mechanical state of the hardened layer of cylindrical specimens made of V95 and D16T alloys // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya: Fiz.-Matem. Nauki, 2010, vol. 5, no. 21, pp. 222–228. (in Russian)
- Radchenko V.P., Morozov A.P., Lunin V.V. Study of the kinetics of physical-mechanical parameters of hardened specimens made of V95 and D16T alloys due to thermal exposure and high-cycle fatigue tests // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya: Fiziko-Matematicheskie Nauki, 2012. No. 1 (26). P. 123–131. (in Russian)
- Wildeis A., Christ H.-J., Brandt R. Influence of Residual Stresses on the Crack Initiation and Short Crack Propagation in a Martensitic Spring Steel // Metals, 2022, vol. 12, no. 7, pp. 1085. https://doi.org/10.3390/met12071085.
- Wang C., Lai Y., Wang L. et al. Dislocation-based study on the influences of shot peening on fatigue resistance // Surface and Coatings Technology, 2020, vol. 383, no. 7, pp. 125247. http://dx.doi.org/10.1016/j.surfcoat.2019.125247
- Qu S., Duan C., Hu X. et al. Effect of shot peening on microstructure and contact fatigue crack growth mechanism of shaft steel // Materials Chemistry and Physics, 2021, vol. 274, no. 9, pp. 125116. http://dx.doi.org/10.1016/j.matchemphys.2021.125116
- Recent Advances in Laser Surface Hardening: Techniques, Modeling Approaches, and Industrial Applications // Crystals, 2024, vol. 14, no. 8, pp. 726. http://dx.doi.org/10.3390/cryst14080726
- Czupryński A., Janicki D., Górka J. et al. High-Power Diode Laser Surface Transformation Hardening of Ferrous Alloys // Materials, 2022, vol. 15, no. 5, pp. 1915. http://dx.doi.org/10.3390/ma15051915
- Induction Hardening of Carbon Steel Material: The Effect of Specimen Diameter // Advanced Materials Research, 2014, vol. 911, pp. 210–214. http://dx.doi.org/10.4028/www.scientific.net/AMR.911.210
- Świetlicki A., Szala M., Walczak M. Effects of Shot Peening and Cavitation Peening on Properties of Surface Layer of Metallic Materials—A Short Review // Materials, 2022, vol. 15, no. 7, pp. 2476. http://dx.doi.org/10.3390/ma15072476
- Jin J., Wang W., Chen X. Microstructure and Mechanical Properties of Ti + N Ion Implanted Cronidur30 Steel // Materials, 2019, vol. 12, no. 3, pp. 427. http://dx.doi.org/10.3390/ma12030427
- Hardening and Strain Localisation in Helium-Ion-Implanted Tungsten // Sci Rep., 2019, vol. 9, pp. 18354. https://www.nature.com/articles/s41598-019-54753-3
- Kolotnikova O.V. Effectiveness of hardening by methods of surface plastic deformation for parts operating at elevated temperatures // Problemy Prochnosti, 1983, no. 2. pp. 112–114. (in Russian)
- Radchenko V.P., Saushkin M.N. A direct method for solving the boundary value problem of residual stress relaxation in a hardened cylindrical product under creep conditions // J. of Appl. Mech.&Techn. Phys. (PMTF), 2009, vol. 50, no. 6, pp. 90–99. (in Russian)
- Radchenko V.P., Kocherov E.P., Saushkin M.N. et al. Experimental and theoretical study of the influence of tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions // J. of Appl. Mech.&Tech. Phys. (PMTF), 2015, vol. 56, no. 2, pp. 313–320. http://dx.doi.org/10.1134/S0021894415020170
- Radchenko V.P., Derevyanka E.E. Kinetics of residual stresses in thin-walled cylindrical specimens after bilateral surface hardening under creep conditions with rigid constraints on angular and axial linear displacements // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, no. 2, pp. 227–240. https://doi.org/10.18500/1816-9791-2023-23-2-227-240
- Derevyanka E.E., Radchenko V.P., Tsvetkov V.V. Relaxation of residual stresses in a surface-hardened cylinder under creep conditions with rigid constraints on linear and angular strains // Mechanics of Solids (Izvestiya RAN. MTT), 2021, no. 3, pp. 118–127. http://dx.doi.org/10.31857/S057232992103003X
- Radchenko V.P., Liberman A.E., Blokhin O.L. Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions // Vestnik Samarskogo Gos. Tekh. Univ. Fiz.-Mat. Nauki, 2022, vol. 26, no. 1, pp. 119–139. http://dx.doi.org/10.14498/vsgtu1884
- Radchenko V.P., Tsvetkov V.V., Saushkin M.N. Relaxation of residual stresses in a hardened cylinder under creep conditions under loading by an axial force, torque, and internal pressure // J. of Appl. Mech.&Tech. Phys. (PMTF), 2020, vol. 61, no. 4, pp. 96–107. http://dx.doi.org/10.15372/PMTF20200412
- Radchenko V.P., Saushkin M.N. Creep and Relaxation of Residual Stresses in Hardened Structures. Moscow: Mashinostroenie-1, 2005. 226 p. (in Russian)
- Radchenko V., Glebov V.A. Method for Calculating the Relaxation of Residual Creep Stresses in a Surface-Hardened Cylinder with a Series of Periodically Arranged Semicircular Incisions under Thermal Exposure Conditions // Mechanics of Solids, 2024, vol. 59, no. 7, pp. 3735–3746. http://dx.doi.org/10.1134/S0025654424606293
- Влияние геометрической формы надреза на релаксацию остаточных напряжений в поверхностно упрочненном цилиндре при термоэкспозиции // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2025. Т. 25, вып. 3. С. 391–405. doi: 10.18500/1816-9791-2025-25-3-391-405, EDN: MQEXGM
- Sazanov V.P., Semenova O.Yu., Kirpichev V.A. et al. Mathematical modeling of initial deformations in surface-hardened parts when choosing a witness sample // Vestnik UGATU, 2016, vol. 20, no. 3, pp. 31–37. (in Russian)
- Pavlov V.F., Stolyarov A.K., Kirpichev V.A. et al. Calculation of Residual Stresses in Parts with Stress Concentrators by Initial Strains. Samara: SNC RAS Publishing House, 2008. 124 p. (in Russian)
- Radchenko V.P., Shishkin D.M. Numerical method for calculating the stress-strain state in a prismatic surface-hardened specimen with a notch in elastic and elastoplastic formulations // Izvestiya Saratovskogo Universiteta. Novaya Seriya. Seriya: Matematika. Mekhanika. Informatika, 2021, vol. 21, no. 4, pp. 503–519. http://dx.doi.org/10.18500/1816-9791-2021-21-4-503-519
- Radchenko V.P., Shishkin D.M., Saushkin M.N. Numerical solution of the problem of the stress-strain state of a surface-hardened prismatic specimen with a V-shaped notch in elastic and elastoplastic formulations // Vestnik SamGTU. Seriya: Fiz.-Mat. Nauki, 2023, vol. 27, no. 3, pp. 491–508. https://doi.org/10.14498/vsgtu2017
- Bulygin I.P., Vlasova P.T., Gorbodei A.T. et al. Atlas of Tensile Diagrams at High Temperatures, Creep Curves and Long-Term Strength of Steels and Alloys for Engines. Moscow: State Publishing House of the Defense Industry, 1957. 173 p. (in Russian)
- Rabotnov Yu.N. Creep of Structural Elements. Moscow: Nauka, 1966. 752 p. (In Russian).
- Radchenko V.P., Eremin Yu.A. Rheological Deformation and Fracture of Materials and Structural Elements. Moscow: Mashinostroenie-1, 2004. 265 p. (in Russian)
Supplementary files


