Minimization of quadratic functionals ratio in eigenvalue problems for the Orr-Sommerfeld equation
- Authors: Georgievskii D.V.1,2,3
-
Affiliations:
- Lomonosov Moscow State University
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 89, No 6 (2025)
- Pages: 1011-1018
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/364151
- DOI: https://doi.org/10.7868/S3034575825060091
- ID: 364151
Cite item
Abstract
In eigenvalue problems for the Orr–Sommerfeld equation, in cases of no-slip conditions or the assignment of shear stress on one of the boundaries, upper estimates for the real parts of the eigenvalues responsible for stability are analytically obtained. To evaluate more accurate estimates than the known ones, it is necessary to minimize the ratios of certain combinations of quadratic functionals arising from the application of the integral relations method. The exact minima of the ratios are calculated and compared with the estimated minima obtained based on well-known Friedrichs inequalities.
About the authors
D. V. Georgievskii
Lomonosov Moscow State University; Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences; Moscow Center for Fundamental and Applied Mathematics
Email: georgiev@mech.math.msu.su
Moscow, Russia; Moscow, Russia; Moscow, Russia
References
- Joseph D.D. Eigenvalue bounds for the Orr–Sommerfeld equation. Pt. 1 // J. Fluid Mech., 1968, vol. 33, no. 3, pp. 617–621. https://doi.org/10.1017/S0022112068001552
- Joseph D.D. Eigenvalue bounds for the Orr–Sommerfeld equation. Pt. 2 // J. Fluid Mech., 1969, vol. 36, no. 4, pp. 721–734. https://doi.org/10.1017/S0022112069001959
- Synge J.L. Hydrodynamical stability // Semicentenn. Publ. Amer. Math. Soc., 1938, vol. 2, pp. 227–269.
- Lin C.C. The Theory of Hydrodynamic Stability. Cambridge: Univ. Press, 1955.
- Rektorys K. Variational Methods in Mathematics, Science and Engineering. Dordrect — Boston: Reidel, 1980. https://doi.org/10.1007/978-94-011-6450-4
- Collatz L. Eigenwertaufgaben mit Technischen Anwendungen. Leipzig: Academische Verlag., 1963.
- Mikhlin S.G. Variational Methods in Mathematical Physics. Moscow: Nauka, 1970. (In Russian).
- Yih C.-S. Note on eigenvalue bounds for the Orr –Sommerfeld equation. // J. Fluid Mech., 1969, vol. 38, no. 2, pp. 273–278. https://doi.org/10.1017/S0022112069000164
- Georgescu A. Note on Joseph’s inequalities in stability theory // ZAMP, 1970, vol. 21, no. 1, pp. 258–260. https://doi.org/10.1007/BF01590652
- Miklavčič M. Eigenvalues of the Orr– Sommerfeld equation in an unbounded domain // Arch. Rat. Mech.&Analysis, 1983, vol. 83, pp. 221–228. https://doi.org/10.1007/BF00251509
- Banerjee M.B., Shandil R.G., Gourla M.G.et al. Eigenvalue bounds for the Orr–Sommerfeld equation and their relevance to the existence of backward wave motion // Studies in Appl. Math., 1999, vol. 103, no. 1, pp. 43–50. http://dx.doi.org/10.1111/1467-9590.00119
- Banerjee M.B., Shandil R.G., Chauhan S.S. et al. Eigenvalue bounds for the Orr–Sommerfeld equation and their relevance to the existence of backward wave motion. Pt. II // Studies in Appl. Math., 2000, vol. 105, no. 1, pp. 31–34. http://dx.doi.org/10.1111/1467-9590.00140
- Puri P. Stability and eigenvalues bounds of the flow of a dipolar fluid between two parallel plates // Proc. Roy. Soc. A., 2005, vol. 461, pp. 1401–1421. http://dx.doi.org/10.1098/rspa.2004.1434
- Watanabe Y., Plum M., Nakao M.T. A computer-assisted instability proof for the Orr — Sommerfeld problem with Poiseuille flow // ZAMM, 2009, vol. 89, no. 1, pp. 5–18. http://dx.doi.org/10.1002/zamm.200700158
- Ding S., Lin Z. Stability for two-dimensional plane Couette flow to the incompressible Navier–Stokes equations with Navier boundary conditions // Commun. Math. Sci., 2020, vol. 18, no. 5, pp. 1233–1258. https://doi.org/10.48550/arXiv.1710.04855
- Bras e Silva P., Carvalho J. Stability and eigenvalue bounds for micropolar shear flows // ZAMM, 2024, vol. 104, no. 12, pp. 1–10. https://doi.org/10.48550/arXiv.2409.11584
- Kozyrev O.R., Stepanyants Yu.A. The method of integral relations in the linear theory of hydrodynamic stability // Advances in Science and Technology. Ser. Fluid Mechanics. Moscow.: VINITI, 1991, vol. 25, pp. 3–89. (in Russian)
- Georgievskii D.V. Selected Problems of Continuum Mechanics. 2-nd ed. Moscow: URSS, 2020. (in Russian)
- Georgievskii D.V. New estimates of the stability of one-dimensional planeparallel flows of a viscous incompressible fluid // J. Appl. Math.&Mech., 2010, vol. 74, no. 4, pp. 452–459. http://dx.doi.org/10.1016/j.jappmathmech.2010.09.011
- Georgievskii D.V. Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows // Moscow Univ. Mech. Bull., 2022, vol. 77, no. 3, pp. 61–65. https://doi.org/10.3103/S0027133022030049
Supplementary files


