Minimization of quadratic functionals ratio in eigenvalue problems for the Orr-Sommerfeld equation
- Authors: Georgievskii D.V.1,2,3
-
Affiliations:
- Lomonosov Moscow State University
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 89, No 6 (2025)
- Pages: 1011-1018
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/364151
- DOI: https://doi.org/10.7868/S3034575825060091
- ID: 364151
Cite item
Abstract
About the authors
D. V. Georgievskii
Lomonosov Moscow State University; Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences; Moscow Center for Fundamental and Applied Mathematics
Email: georgiev@mech.math.msu.su
Moscow, Russia; Moscow, Russia; Moscow, Russia
References
- Joseph D.D. Eigenvalue bounds for the Orr–Sommerfeld equation. Pt. 1 // J. Fluid Mech., 1968, vol. 33, no. 3, pp. 617–621. https://doi.org/10.1017/S0022112068001552
- Joseph D.D. Eigenvalue bounds for the Orr–Sommerfeld equation. Pt. 2 // J. Fluid Mech., 1969, vol. 36, no. 4, pp. 721–734. https://doi.org/10.1017/S0022112069001959
- Synge J.L. Hydrodynamical stability // Semicentenn. Publ. Amer. Math. Soc., 1938, vol. 2, pp. 227–269.
- Lin C.C. The Theory of Hydrodynamic Stability. Cambridge: Univ. Press, 1955.
- Rektorys K. Variational Methods in Mathematics, Science and Engineering. Dordrect — Boston: Reidel, 1980. https://doi.org/10.1007/978-94-011-6450-4
- Collatz L. Eigenwertaufgaben mit Technischen Anwendungen. Leipzig: Academische Verlag., 1963.
- Mikhlin S.G. Variational Methods in Mathematical Physics. Moscow: Nauka, 1970. (In Russian).
- Yih C.-S. Note on eigenvalue bounds for the Orr –Sommerfeld equation. // J. Fluid Mech., 1969, vol. 38, no. 2, pp. 273–278. https://doi.org/10.1017/S0022112069000164
- Georgescu A. Note on Joseph’s inequalities in stability theory // ZAMP, 1970, vol. 21, no. 1, pp. 258–260. https://doi.org/10.1007/BF01590652
- Miklavčič M. Eigenvalues of the Orr– Sommerfeld equation in an unbounded domain // Arch. Rat. Mech.&Analysis, 1983, vol. 83, pp. 221–228. https://doi.org/10.1007/BF00251509
- Banerjee M.B., Shandil R.G., Gourla M.G.et al. Eigenvalue bounds for the Orr–Sommerfeld equation and their relevance to the existence of backward wave motion // Studies in Appl. Math., 1999, vol. 103, no. 1, pp. 43–50. http://dx.doi.org/10.1111/1467-9590.00119
- Banerjee M.B., Shandil R.G., Chauhan S.S. et al. Eigenvalue bounds for the Orr–Sommerfeld equation and their relevance to the existence of backward wave motion. Pt. II // Studies in Appl. Math., 2000, vol. 105, no. 1, pp. 31–34. http://dx.doi.org/10.1111/1467-9590.00140
- Puri P. Stability and eigenvalues bounds of the flow of a dipolar fluid between two parallel plates // Proc. Roy. Soc. A., 2005, vol. 461, pp. 1401–1421. http://dx.doi.org/10.1098/rspa.2004.1434
- Watanabe Y., Plum M., Nakao M.T. A computer-assisted instability proof for the Orr — Sommerfeld problem with Poiseuille flow // ZAMM, 2009, vol. 89, no. 1, pp. 5–18. http://dx.doi.org/10.1002/zamm.200700158
- Ding S., Lin Z. Stability for two-dimensional plane Couette flow to the incompressible Navier–Stokes equations with Navier boundary conditions // Commun. Math. Sci., 2020, vol. 18, no. 5, pp. 1233–1258. https://doi.org/10.48550/arXiv.1710.04855
- Bras e Silva P., Carvalho J. Stability and eigenvalue bounds for micropolar shear flows // ZAMM, 2024, vol. 104, no. 12, pp. 1–10. https://doi.org/10.48550/arXiv.2409.11584
- Kozyrev O.R., Stepanyants Yu.A. The method of integral relations in the linear theory of hydrodynamic stability // Advances in Science and Technology. Ser. Fluid Mechanics. Moscow.: VINITI, 1991, vol. 25, pp. 3–89. (in Russian)
- Georgievskii D.V. Selected Problems of Continuum Mechanics. 2-nd ed. Moscow: URSS, 2020. (in Russian)
- Georgievskii D.V. New estimates of the stability of one-dimensional planeparallel flows of a viscous incompressible fluid // J. Appl. Math.&Mech., 2010, vol. 74, no. 4, pp. 452–459. http://dx.doi.org/10.1016/j.jappmathmech.2010.09.011
- Georgievskii D.V. Friedrichs inequalities and sharpened sufficient stability conditions of plane-parallel flows // Moscow Univ. Mech. Bull., 2022, vol. 77, no. 3, pp. 61–65. https://doi.org/10.3103/S0027133022030049
Supplementary files


