On antiplane waves localized in the vicinity of the interface of two elastic half-spaces in the framework of lattice dynamics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider antiplane waves that are localised in the vicinity of the interface between two elastic half-spaces. The problem is formulated within the context of the dynamics of a square lattice. Accordingly, the interface region comprises particles with a different mass to the particles in the bulk and with different elastic bonds. For this model, we demonstrate the possibility of two types of wave being localised in the vicinity of the interface. The corresponding dispersion relations are obtained. The results are compared with the Gurtin-Murdoch theory of surface elasticity.

About the authors

I. A. Eremeyeva

University of L'Aquila

Email: eremeyeva.inna@gmail.com
L'Aquila, Italy

S. M. Aizikovich

Don State technical University

Email: saizikovich@gmail.com
Rostov on Don, Russia

References

  1. Gurtin M.E., Murdoch A.I. A continuum theory of elastic material surfaces // Arch. Rat. Mech.&Analysis, 1975, vol. 57, no. 4, pp. 291–323. https://doi.org/10.1007/BF00261375
  2. Gurtin M.E., Murdoch A.I. Surface stress in solids // Int. J. of Solids&Struct., 1978, vol. 14, pp. 431–440. https://doi.org/10.1016/0020-7683(78)90008-2
  3. Gurtin M.E., Weissmüller J., Larche F. A general theory of curved deformable interfaces in solids at equilibrium // Philos. Mag. A, 1998, vol. 78, no. 5, pp. 1093–1109. https://doi.org/10.1080/01418619808239977
  4. Wang J., Duan H.L., Huang Z.P. et al. A scaling law for properties of nano-structured materials // Proceedings of the Royal Society A: Math., Phys.&Engin. Sci., 2006, vol. 462, no. 2069, pp. 1355–1363.
  5. Theory of elasticity at the nanoscale // Adv. in Appl. Mech., 2008, vol. 42, pp. 1–63. http://dx.doi.org/10.1016/S0065-2156(08)00001-X
  6. Altenbach H., Eremeev V.A., Morozov N.F. On equations of the linear theory of shells with surface stresses taken into account // Mech. of Solids, 2010, vol. 45, no. 3, pp. 331–342. https://doi.org/10.3103/S0025654410030040
  7. Ustinov K.B. On accounting for surface effects in bending of ultrathin plates // Mech. of Solids, 2025, vol. 60, no. 2, pp. 940–957. https://doi.org/10.1134/S0025654424606189
  8. Di Nino S., Rosi G., D’Annibale F. Modeling the mechanical behavior of coated masonry elements using surface stress theory // Europ. J. of Mech. — A/Solids, 2025, vol. 115, no. 105779, pp. 1–12. https://doi.org/10.1016/j.euromechsol.2025.105779
  9. Murdoch A.I. The propagation of surface waves in bodies with material boundaries //J. of the Mech.&Phys. of Solids, 1976, vol. 24, pp. 137–146. http://dx.doi.org/10.1016/0022-5096(76)90023-5
  10. Murdoch A.I. The effect of interfacial stress on the propagation of Stoneley waves //J. of Sound&Vibration, 1977, vol. 50, pp. 1–11. https://doi.org/10.1016/0022-460X(77)90547-8
  11. Pal P.K., Acharya D., Sengupta P.R. Effect of surface stresses on surface waves in elastic solids // Sadhana, 1997, vol. 22, no. 5, pp. 659–670. https://doi.org/10.1007/BF02802553
  12. Surface waves supported by thin-film/substrate interactions // IMA Journal of Applied Mathematics. 2007. vol. 72. pp. 730–747. https://doi.org/10.1093/IMAMAT%2FHXM018
  13. Huang Z. Torsional wave and vibration subjected to constraint of surface elasticity // Acta Mechanica, 2018, vol. 229, pp. 1171–1182. https://doi.org/10.1007/s00707-017-2047-5
  14. Eremeyev V.A., Rosi G., Naili S. Surface/interfacial anti-plane waves in solids with surface energy // Mech. Res. Com., 2016, vol. 74, pp. 8–13. https://doi.org/10.1016/j.mechrescom.2016.02.018
  15. Eremeyev V.A., Rosi G., Naili S. Transverse surface waves on a cylindrical surface with coating // Int. J. of Engin. Sci., 2020, vol. 147, no. 103188. https://doi.org/10.1016/j.ijengsci.2019.103188
  16. Mikhasev G.I., Eremeyev V.A. Effects of interfacial sliding on anti-plane waves in an elastic plate imperfectly attached to an elastic half-space // Int. J. of Engin. Sci., 2024, vol. 205, no. 104158. https://doi.org/10.1016/j.ijengsci.2024.104158
  17. Ru C. Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions // Science China Physics, Mech.& Astronomy, 2010, vol. 53, no. 3, pp. 536–544. https://doi.org/10.1007/s11433-010-0144-8
  18. Murdoch A.I. Some fundamental aspects of surface modelling // J. of Elasticity, 2005, vol. 80, pp. 33–52. https://doi.org/10.1007/s10659-005-9024-2
  19. Eremeyev V.A., Sharma B.L. Anti-plane surface waves in media with surface structure: Discrete vs. continuum model // Int. J. of Engin. Sci., 2019, vol. 143, pp. 33–38. https://doi.org/10.1016/j.ijengsci.2019.06.007
  20. Eremeyev V.A. Anti-plane interfacial waves in a square lattice // Networks& Heterogeneous Media, 2025, vol. 20, no. 1, pp. 52–64. https://doi.org/10.3934/nhm.2025004
  21. Brillouin L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. N.-Y.: McGraw-Hill Book Company, 1946. 247 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).