Power-law elliptical bodies of minimum drag in approximation of newton pressure coefficient law
- Authors: Takovitskii S.A.1
-
Affiliations:
- Central aerohydrodynamic institute named after prof. N.E. Zhukovsky
- Issue: Vol 89, No 5 (2025)
- Pages: 861-876
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/351671
- DOI: https://doi.org/10.7868/S3034575825050118
- ID: 351671
Cite item
Abstract
About the authors
S. A. Takovitskii
Central aerohydrodynamic institute named after prof. N.E. Zhukovsky
Email: c.a.t@tsagi.ru
Zhukovsky, Russia
References
- Newton I. Mathematical Principles of Natural Philosophy. Moscow: Nauka, 1989. (In Russian)
- Kraiko A.N. Newton’s problem on the head part of the minimum drag with A.N. Krylov’s commentaries and continuation of its solving history in the XX and early XXI century // High-Speed Hydrodynamics and Shipbuilding, 2018, pp. 47–56.
- Kraiko A.N. Newton’s Problem of the Optimal Forebody: History of the Solution // Fluid Dyn., 2019, vol. 54, no. 8, pp. 1009–1019. https://doi.org/10.1134/S0015462819080056
- Kraiko A.N., Pudovikov D.Ye., P'yankov K.S. et al. Axisymmetric nose shapes of specified aspect ratio, optimum or close to optimum with respect to wave drag // J. Appl. Math.&Mech, 2003, vol. 67, no. 5, pp. 703–730. https://doi.org/10.1016/S0021-8928(03)90043-8
- Takovitskii S.A. The construction of axisymmetric nose shapes of minimum wave drag // J. Appl. Math.&Mech, 2006, vol. 70, no.3, pp. 373–377.
- Efremov N.L., Kraiko A.N., P’yankov K.S. et al. The construction of a nose shape of minimum drag for specified external dimensions and volume using Euler equations // J. Appl. Math.& Mech, 2006, vol. 70, no. 6, pp. 912–923. http://dx.doi.org/10.1016/j.jappmathmech.2007.01.008
- Takovitskii S.A. Optimization Problems of Supersonic Aerodynamics. Moscow: Nauka, 2015. (In Russian)
- Efremov N.L., Kraiko A.N., P’yankov K.S. The axisymmetric nose shape of minimum wave drag for given size and volume // J. Appl. Math.&Mech, 2005, vol. 69, no. 5, pp. 649–664. http://dx.doi.org/10.1016/j.jappmathmech.2005.09.001
- Takovitskii S.A. Analytical solution in the problem of constructing axisymmetric noses with minimum wave drag // Fluid Dyn., 2006, vol. 41, no. 2, pp. 308–312. http://dx.doi.org/10.1007/s10697-006-0045-8
- Takovitskii S.A. Axisymmetric nose parts with a front face and a hypergeometric generatrix as a result of a solution of Newton's problem on a body of minimum drag at fixed dimensions and volume// TsAGI Sci. J., 2023, vol. 54, no. 4, pp. 21–27. (In Russian)
- Takovitskii S.A. Truncated Power-Law Bodies as a Result of an Approximate Solution to the Newton Problem on a Body Having the Minimum Drag // Fluid Dyn, 2022, vol. 57, pp. 657–662. https://doi.org/10.1134/S0015462822050111
- Ferry A., Ness N., Kaplita T. Supersonic flow over conical bodies without axial symmetry // JAS, 1953, vol.20, no. 8, pp. 563–571.
- Maikapar G.I. On the wave drag of non anixymmetric bodies at supersonic speeds // J. Appl. Math. Mech, 1959, vol. 23, no. 2, pp. 528–531. https://doi.org/10.1016/0021-8928(59)90104-2
- Chernyi G.G., Gonor A.L. Transversal contour of minimum pressure drag body. N.-Y.: Academic Press, 1965. P. 283–295.
- Gonor A.L. On three-dimensional bodies of minimum drag at high supersonic speed // J. Appl. Math. Mech, 1963, vol. 27, no. 1, pp. 273–280. https://doi.org/10.1016/0021-8928(63)90116-3
- Gonor A.L. Conical bodies of minimum drag in hypersonic gas flow// J. Appl. Math.&Mech., 1964, vol. 28, no. 2, pp. 471–475. https://doi.org/10.1016/0021-8928(64)90183-2
- Gonor A.L., Kraiko A.N. Some results of the optimal forms study for super- and hypersonic velocities. Moscow: Mir, 1969. P. 456–492. (In Russian)
- Gonor A.L. Determination of the shape of an optimal three-dimensional body with allowance for friction// Izv. Akad. Nauk SSSR, Mekh. Mashinostr., 1965, v. 4. (In Russian)
- Bunimovich A.I., Yakunina G.E. Investigation of the shape of the transverse contour of a conical three-dimensional body of minimal drag moving in rarefied gas // Fluid Dyn, 1986, vol. 21, pp. 771–776. https://doi.org/10.1007/BF01050900
- Vedernikov Y.A., Gonor A.L., Zubin M.A. et al. Aerodynamic characteristics of star-shaped bodies at Mach numbers M = 3–5 // Fluid Dyn., 1981, vol. 16, pp. 559–563. https://doi.org/10.1007/BF01094600
- Yakunina G.Ye. The construction of optimum three-dimensional shapes within the framework of a model of local interaction // J. Appl. Math.&Mech., 2000, vol. 64, no. 2, pp. 289–298. https://doi.org/10.1016/S0021-8928(00)00051-4
- Yakunina G.Ye. The optimum non-conical and asymmetrical three-dimensional configurations // J. Appl. Math. Mech., 2000, vol. 64, no. 4, pp. 583–591. https://doi.org/10.1016/S0021-8928(00)00084-8
- Kraiko A.N., Pudovikov D.Ye., Yakunina G.Ye. Theory of aerodynamic shapes close to optimal. Moscow: Janus-K, 2001. (In Russian)
- Takovitskii S.A. Conical Bodies with Star-Shaped Transverse Contour Having the Minimum Wave Drag // Fluid Dyn., 2024, vol. 59, pp. 122–129. https://doi.org/10.1134/S0015462823602966
- Maikapar G.I. Bodies formed by the stream surfaces of conical flows // Fluid Dyn., 1966, vol. 1, pp. 89–90. https://doi.org/10.1007/BF01016277
- Gusarov A.A., Dvoretskii V.M., Ivanov M.Y. et al. Theoretical and experimental investigation of the aerodynamic characteristics of three-dimensional bodies // Fluid Dyn, 1979, vol. 14, pp. 402–406. https://doi.org/10.1007/BF01062446
- Kraiko A.N., Tillyaeva N.I., Brailko I.A. Construction of the Three-Dimensional Minimum-Wave-Drag Forebody of Given Length and with a Circular Base (Review) // Fluid Dyn., 2025, vol. 60, no. 1. http://dx.doi.org/10.1134/S0015462824604716
- Nguyen V.L. Power-Law Elliptical Bodies of Minimum Drag in a Gas Flow // Fluid Dyn, 2024, vol. 58, pp. 1367–1372. https://doi.org/10.1134/S001546282360205X
- Bateman H., Erdelayi A. Higher transcendental functions. Hypergeometric function. Legendre functions. Moscow: Nauka, 1973. (In Russian)
- Bezrodnykh S.I. Analytic continuation of the Appell function F1 and integration of the associated system of equations in the logarithmic case // Comput. Math.&Math. Phys, 2017, vol. 57, pp. 559–589. https://doi.org/10.1134/S0965542517040042
Supplementary files


