Eigenoscillations of the junction of an elastic body and thin rods
- Authors: Nazarov S.A.1
-
Affiliations:
- Institute of Problems of Mechanical Science RAS
- Issue: Vol 89, No 4 (2025)
- Pages: 559-587
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/308597
- DOI: https://doi.org/10.31857/S0032823525040034
- EDN: https://elibrary.ru/vlanpf
- ID: 308597
Cite item
Abstract
We study behaviour of eigenfrequencies of an anisotropic and homogeneous body with several thin cylindrical elastic rods whose exterior ends are clamped. We prove that, as rods thin, in the low-frequency range limits of normalized eigenvalues of the singularly perturbed elasticity problem imply eigenvalues of the family of systems of ordinary differential equations on rod’s axes with the Dirichlet and the Steklov boundary conditions at the outer and inner endpoints respectively while the systems are combined into a joint spectral problem by these the Steklov conditions. For an isotropic junction the limiting problem decouples into the Dirichlet problem for fourth order differential operators and the algebraic problem for a symmetric positive matrix of a size dependent on the number of clamped rods.
About the authors
S. A. Nazarov
Institute of Problems of Mechanical Science RAS
Author for correspondence.
Email: srgnazarov@yahoo.co.uk
St. Petersburg, Russia
References
- Bertram A. Elasticity and Plasticity of Large Deformations. Berlin: Springer, 2005.
- Nazarov S.A. Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates. Novosibirsk: Nauch. kniga, 2002. (in Russian)
- Ladyzhenskaya O.A. The Boundary Value Problems of Mathematical Physics. N. Y.: Springer, 1985.
- Fichera G. Existence Theorems in Elasticity. Berlin; Heidelberg; N. Y.: Springer, 1972.
- Lions J.-L., Magenes E. Problémes aux limites non homogénes et applications. Paris: Dunod, 1968.
- Nazarov S.A. Junction problem of bee-on-ceiling type in the theory of anisotropic elasticity // C. R. Acad. Sci. Paris. Sér. 1, 1995, vol. 320, no. 11, pp. 1419–1424. https://doi.org/10.1016/0764-4442(95)90092-6
- Kozlov V.A., Maz’ya V. G., Movchan A.B. Asymptotic representation of elastic fields in a multi-structure // Asymptot. Anal., 1995, vol. 11, no. 4, pp. 343–415. https://doi.org/10.3233/ASY-1995-11402
- Kozlov V.A., Maz’ya V.G., Movchan A.B. Asymptotic Analysis of Fields in Multi-Structures. Oxford Math. Monogr. Oxford: Clarendon, 1999. https://doi.org/10.1093/oso/9780198514954.001.0001
- Kozlov V.A., Maz’ya V. G., Movchan A.B. Fields in non-degenerate 1D–3D elastic multistructures // Quart. J. Mech. Appl. Math. 2001, vol. 54, no. 2, pp. 177–212. https://doi.org/10.1093/qjmam/54.2.177
- Nazarov S.A. Asymptotics of solutions to the spectral elasticity problem for a spatial body with a thin coupler // Sib. Math. J., 2012, vol. 53, no. 3, pp. 274–290. https://doi.org/10.1134/S0037446612020103
- Beale J.T. Scattering frequencies of resonators // Comm. Pure Appl. Math., 1973, vol. 26, no. 4, pp. 549–563. https://doi.org/10.1002/cpa.3160260406
- Arsen’ev A.A. The existence of resonance poles and scattering resonances in the case of boundary conditions of the second and third kind // U.S.S.R. Comput. Math. Math. Phys., 1976, vol. 16, no. 3, pp. 171–177.
- Gadyl’shin R.R. Characteristic frequencies of bodies with thin spikes. I. Convergence and estimates // Math. Notes, 1993, vol. 54, no. 6, pp. 1192—1199.
- Kozlov V.A., Maz’ya V.G, Movchan A.B. Asymptotic analysis of a mixed boundary value problem in a multi-structure // Asymptot. Anal., 1994, vol. 8, no 2, pp. 105–143. https://doi.org/10.3233/ASY-1994-8201
- Nazarov S.A. Junctions of singularly degenerating domains with different limit dimensions. 1 // J. Math. Sci., 1996, vol. 80, no. 5, pp. 1989–2034. 27 https://doi.org/10.1007/BF02362511
- Nazarov S.A. Asymptotic analysis and modeling of the jointing of a massive body with thin rods // J. Math. Sci., 2005, vol. 127, no 5, pp. 2172–2263. https://doi.org/10.1007/s10958-005-0177-0
- Gadyl’shin R.R. On the eigenvalues of a “dumbbell with a thin handle” // Izv. Math., 2005, vol. 69, no. 2, pp. 265–329.
- Joly P., Tordeux S. Matching of asymptotic expansions for wave propagation in media with thin slots I: The asymptotic expansion // SIAM Multiscale Model. Simul, 2006, vol. 5, no. 1, pp. 304–336. https://doi.org/10.1137/05064494X
- Lin J., Zhang H. Scattering and field enhancement of a perfect conducting narrow slit // SIAM J. on Appl. Math., 2017, vol. 77, no. 3, pp. 951–976. https://doi.org/10.1137/16M1094464
- Lin J., Zhang H. Scattering by a periodic array of subwavelength slits I: field enhancement in the diffraction regime // Multiscale Model. Sim., 2018, vol. 16, no. 2, pp. 922–953. https://doi.org/10.1137/17M1133774
- Chesnel L., Nazarov S.A. Design of an acoustic energy distributor using thin resonant slits // Proc. Royal Soiety, 2021, vol. 477, no. 2247. https://doi.org/10.1098/rspa.2020.0896
- Sanchez-Hubert J., Sanchez-Palencia É. Couplage flexion-torsion-traction dans les poutres anisotropes a section heterogene // C. R. Acad. Sci. Paris. Ser. 2, 1991, vol. 312, no. 4, pp. 337–344.
- Nazarov S.A. Justification of the asymptotic theory of thin rods. Integral and pointwise estimates // J. Math. Sci. 1999, vol. 97, no. 4, pp. 4245–4279. https://doi.org/10.1007/BF02365044
- Sanchez-Hubert J., Sanchez-Palencia É. Coques elastiques mines. Proprietes asymptotiques. Paris: Masson, 1997.
- Yeliseyev V.V, Orlov I.S. Asymptotic splitting in the three-dimensional problem of linear elasticity for elongated bodies with a structure // J. AMM, 1999, vol. 63, no. 1, pp. 85–92. https://doi.org/10.1016/S0021-8928(99)00013-1
- Panassenko G. Multi-Scale Modelling for Structures and Composites // Dordrecht: Springer, 2005. https://doi.org/10.1007/1-4020-2982-9
- Nazarov S.A. Korn’s inequality for an elastic junction of a body with a rod // Problem of Mech. of Solids, 2002, pp. 234–240. (in Russian)
- Nazarov S.A. Korn’s inequalities for elastic junctions of massive bodies and thin plates and rods // Russ. Math. Surveys, 2008, vol. 63, no. 1, pp. 35–107.
- Nazarov S.A. A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains // St. Petersburg Math. J., 1996, vol. 7, no. 5, pp. 681–748.
- Panassenko G.P. Asymptotic analysis of bar systems. 1. // Russian J. Math. Pis., 1994, vol. 2, no. 3, pp. 325–352; 2. // ibid. 1996, vol. 4, no. 1, pp. 87–116.
- Korn A. Solution générale du probléme d’équilibre dans la théorie l’élasticité dans le cas où les efforts sont donnés à la surface // Ann. Université Toulouse, 1908, pp. 165–269.
- Cioranescu D., Oleinik O.A., Tronel G. On Korn’s inequalities for frame type structures and junctions // C. R. Acad. Sci. Paris Sér. 1 Math. 1989, vol. 309, no. 9, pp. 591–596.
- Nazarov S.A. Korn’s inequalities for junctions of spatial bodies and thin rods // Math. Methods Appl. Sci., 1997, vol. 20, no. 3, pp. 219–243.
- Duvaut G., Lions J.-L. Les inèquations en mêcanique et en physique, Paris: Dunod, 1972.
- Kondrat’ev V.A., Oleinik O.A. Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities // Russ. Math. Surveys, 1988, vol. 43, no. 5, pp. 65–119.
- Nazarov S.A. The Korn inequalities which are asymptotically sharp for thin domains // Vestn. St.Petersburg Univ. Math., 1992, vol. 25, no. 2, рр. 18–22.
- Rabotnov Yu.N. Mechanics of a Deformable Solid. Moscow: Nauka, 1988.
- Nazarov S.A. The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes // Russ. Math. Surveys, 1999, vol. 54, no. 5, pp. 947–1014.
- Kondrat’ev V.A. Boundary problems for elliptic equations in domains with conical or angular points // Trans. Moscow Math. Soc., 1967, vol. 16, pp. 227–313.
- Nazarov S.A., Plamenevsky B.A. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Berlin; N. Y.: Walter de Gruyter, 1994.
- Kozlov V.A., Maz’ya V.G., Rossmann J. Elliptic Boundary Value Problems in Domains with Point Singularities. Providence: Amer. Math. Soc., 1997.
- Van-Dyke M.D. Perturbation Methods in Fkuid Mechanics. N.-Y.; L.: Acad. Press., 1964.
- Il’in A.M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Providence, Rhode Island: Americal Math. Soc., 1992.
- Maz’ya V., Nazarov S., Plamenevskij B. Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. 1 & 2. Basel: Birkhäuser Verlag, 2000). https://doi.org/10.1002/zamm.19930730312
- Birman M.S., Solomyak M.Z. Spectral Theory and Selfadjoint Operators in Hilbert Space. Dordrecht: Reidel, 1987.
- Vishik M.I., Lyusternik L.A. Regular degeneration and boundary layer for linear differential equations with small parameter // Transl., Ser. 2, Am. Math. Soc., 1962, vol. 20, pp. 239–364.
- Rzhanitsin A.R. Construction Mechanics. Moscow: High school, 1982. (in Russian)
- Svetlitskii V.A. Mechanics of Rods. Vol. 1 & 2. Moscow: High school, 1987. (in Russian)
- Tutek Z., Aganovich I. A justification of the one-dimensional model of an elastic beam // Math. Methods in Appl. Sci., 1986, vol. 8, pp. 1–14.
- Nazarov S.A. Oscillations of elastic solids with small heavy inclusions (concentrated masses) // J. AMM (submitted)
- Panasenko G.P. Averaging of processes in strongly inhomogeneous structures // Dokl. Math., 1988, vol. 33, no. 1, pp. 20–22.
- Panasenko G.P. Multicomponent homogenization for processes in essentially nonhomogeneous structures // Math. USSR-Sb., 1991, vol. 69, no. 1, pp. 143–153.
- Argatov I.I., Nazarov S.A. Equilibrium of an elastic body pierced by horizontal thin elastic rods // J. of Appl. Math. Techn. Physics, 1999, vol. 40, no. 4, pp. 763–768.
- Cioranescu D., Oleinik O.A., Tronel G. Korn’s inequalities for frame type structures and junctions with sharp estimates for the constants // Asymptot. Anal., 1994, vol. 8, no. 1, pp. 1–14. https://doi.org/10.3233/ASY-1994-8101
Supplementary files
