Stress Relaxation in Bended Viscoelastic Plate with Tension-Compression Asymmetry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents closed-form analytical solution to the plane-strain problem of stress relaxation in a bended plate with tension-compression asymmetry (TCA) in viscous properties. Reversible and irreversible strains are assumed to be finite. We utilize a linear viscous model with equivalent stress that is piecewise linear function of the principal stresses with TCA parameter. The specific features of the solution are discussed.

About the authors

G. M. Sevastyanov

Institute of Machinery and Metallurgy KhFRC FEB RAS

Author for correspondence.
Email: akela.86@mail.ru
Russia, Komsomolsk-on-Amure

References

  1. Ambartsumyan S.A., Khachatryan A.A. Basic equations of the theory of elasticity for materials having different elastic moduli in tension and compression // Engng. J.: Mech. Solids, 1966, no. 2, pp. 44–53. (in Russian)
  2. Shapiro G.S. On deformations of solids with different elastic moduli in tension and compression // Engng. J.: Mech. Solids, 1966, no. 2, pp. 123–125. (in Russian)
  3. Ambartsumyan S.A., Khachatryan A.A. On bimodular elasticity theory // Engng. J.: Mech. Solids, 1966, no. 6, pp. 64–67. (in Russian)
  4. Maslov V.P., Mosolov P.P. General theory of the equations of motion of an elastic medium of different moduli // JAMM, 1985, vol. 49, no. 3, pp. 322–336. https://doi.org/10.1016/0021-8928(85)90031-0
  5. Myasnikov V.P., Oleinikov A.I. Fundamental general relationships for a model of an isotropically elastic heteromodular medium // Dokl. Phys., 1992, vol. 322, no. 1, pp. 44–53. (in Russian)
  6. Oleinikov A.I., Mogilnikov E.V. Uniqueness and stability of the solutions for boundary value problems for bimodular nonlinear materials // Far Eastern Math. J., 2002, vol. 3, no. 2, pp. 242–253. (in Russian)
  7. Tsvelodub I.Yu. Multimodulus elasticity theory // J. Appl. Mech.&Tech. Phys., 2008, vol. 49, pp. 129–135. https://doi.org/10.1007/s10808-008-0019-1
  8. Du Z., Zhang G., Guo T., Tang Sh., Guo X. Tension-compression asymmetry at finite strains: A theoretical model and exact solutions // J. Mech.&Phys. Solids, 2020, vol. 143, art. no. 104084. https://doi.org/10.1016/j.jmps.2020.104084
  9. Cazacu O., Barlat F. A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals // Int. J. Plasticity, 2004, vol. 20(11), pp. 2027–2045. https://doi.org/10.1016/j.ijplas.2003.11.021
  10. Cazacu O., Plunkett B., Barlat F. Orthotropic yield criterion for hexagonal closed packed metals // Int. J. Plasticity, 2006, vol. 22(7), pp. 1171–1194. https://doi.org/10.1016/j.ijplas.2005.06.001
  11. Cazacu O., Revil-Baudard B. Tension-compression asymmetry effects on the plastic response in bending: new theoretical and numerical results // Mech. Res. Commun., 2021, vol. 114, art. no. 103596. https://doi.org/10.1016/j.mechrescom.2020.103596
  12. Pirnia F. Experimental Analyses on XLPE under Tension and Compression / Master’s Degree Thesis. Dep. Mech. Engng., Blekinge Institute of Technology, Karlskrona, Sweden. 2014.
  13. Guo Y., Liu G., Huang Y. A complemented multiaxial creep constitutive model for materials with different properties in tension and compression // Europ. J. Mech. A/Solids, 2022, vol. 93, art. no. 104510. https://doi.org/10.1016/j.euromechsol.2022.104510
  14. Zolochevsky A., Voyiadjis G.Z. Theory of creep deformation with kinematic hardening for materials with different properties in tension and compression // Int. J. Plasticity, 2005, vol. 21(3), pp. 435–462. https://doi.org/10.1016/j.ijplas.2003.12.007
  15. Banshchikova I.A. Construction of constitutive equations for orthotropic materials with different properties in tension and compression under creep conditions // J. Appl. Mech.&Tech. Phys., 2020, vol. 61, pp. 87–100. https://doi.org/10.1134/S0021894420010101
  16. Al’tenbakh Kh.I., Zolochevskii A.A. Energy version of creep and stress-rupture strength theory for anisotropic and isotropic materials which differ in resistance to tension and compression // J. Appl. Mech.&Tech. Phys., 1992, vol. 33, pp. 101–106. https://doi.org/10.1007/BF00864514
  17. Gorev B.V., Rubanov V.V., Sosnin O.V. Construction of the creep equations for materials with different extension and compression properties // J. Appl. Mech.&Tech. Phys., 1979, vol. 20(4), pp. 487–492. https://doi.org/10.1007/BF00905605
  18. Teixeira L., Gillibert J., Sayet T., Blond E. A creep model with different properties under tension and compression: Applications to refractory materials // Int. J. Mech. Sci., 2021, vol. 212, art. no. 106810. https://doi.org/10.1016/j.ijmecsci.2021.106810
  19. Korobeinikov S.N., Oleinikov A.I., Gorev B.V., Bormotin K.S. Mathematical simulation of creep processes in metal products made of materials with different properties in tension and compression // Comput. Meths.&Progr., 2008, vol. 9, pp. 346–365. (in Russian)
  20. Bykovtsev G.I., Yarushina V.M. On the features of the unsteady creep model based on the use of piecewise linear potentials // In: Problems of Mechanics of Continuous Media and Structural Elements (to the 60th Anniversary of Prof. G.I. Bykovtsev). Vladivostok, Dalnauka, 1998. pp. 9–26. (in Russian)
  21. Burenin A.A., Yarushina V.M. On modeling the deformation of materials with different properties in tension and compression // In: Problems of Mechanics of Deformable Solids and Rocks. Collection of articles dedicated to the 75th anniversary of E.I. Shemyakin / Ed. by: Ivlev D.D., Morozov N.F. Moscow: Fizmatlit, 2006. pp. 100–106. (in Russian)
  22. Yarushina V.M. Simulation of the creep of materials with different strengths // Dokl. Phys., 2005, vol. 50, no. 7, pp. 385–387. https://doi.org/10.1134/1.2005366
  23. Sevastyanov G.M., Bormotin K.S. Stress relaxation in bended viscoelastic plate with tension-compression asymmetry // J. Appl. Mech.&Tech. Phys., 2023. (in Press).
  24. Sidoroff F. Un modele viscoelastique non lineaire avec configuration intermediate // J. de Mécanique, 1974, vol. 13(4), pp. 679–713.
  25. Ivlev D.D. The theory of fracture of solids // JAMM, 1959, vol. 23, no. 3, pp. 884–895. https://doi.org/10.1016/0021-8928(59)90185-6
  26. Rivlin R. Large elastic deformations of isotropic materials – V: The problem of flexure // Proc. Roy. Soc. London. Ser. A. Math.&Phys. Sci., 1949, vol. 195, pp. 463–473. https://doi.org/10.1098/rspa.1949.0004
  27. Destrade M., Murphy J.G., Rashid B. Differences in tension and compression in the nonlinearly elastic bending of beams // Int. J. Struct. Changes in Solids – Mech.&Appl., 2009, vol. 1(1), pp. 73–81.
  28. Destrade M., Gilchrist M.D., Motherway J.A., Murphy J.G. Bimodular rubber buckles early in bending // Mech. Mater., 2010, vol. 42(4), pp. 469–476. https://doi.org/10.1016/j.mechmat.2009.11.018
  29. Ghobady E., Shutov A., Steeb H. Parameter identification and validation of shape-memory polymers within the framework of finite strain viscoelasticity // Materials (Basel), 2021, vol. 14(8), 2049. https://doi.org/10.3390/ma14082049
  30. Sevastyanov G.M. Creep relaxation in nonlinear viscoelastic twisted rods // ZAMM. 2022. e202100552. https://doi.org/10.1002/zamm.202100552

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (84KB)
3.

Download (77KB)
4.

Download (247KB)
5.

Download (313KB)
6.

Download (126KB)

Copyright (c) 2023 Г.М. Севастьянов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies