On the One Method of Analyzing the Stability of Rest Points in Critical Cases

Cover Page

Cite item

Full Text

Abstract

For a two-dimensional oscillatory system with imaginary characteristic roots of linearized equations, a method is proposed that simplifies calculations and does not require the analyticity of the right-hand sides of the equations. The method is based on the decomposition of the vector function of the right-hand sides of the equations into solenoidal and potential components. Integral estimates for the stability of the equilibrium position are obtained.

About the authors

S. V. Nesterov

Ishlinsky Institute for Problems in Mechanics of the RAS

Author for correspondence.
Email: bayd@ipmnet.ru
Russia, Moscow

References

  1. Poincaré H. Curves Defined by Differential Equations. Moscow; Leningrad: GITTL, 1947. (in Russian)
  2. Liapunov A.M. The General Problem of Stability of Motion. Moscow;Leningrad: GITTL, 1950. 471 p. (in Russian)
  3. Malkin I.G. Theory of Motion Stability. Moscow; Leningrad: GITTL, 1952. (in Russian)
  4. Lyapunov A.M. Investigation of One of the Special Cases of the Problem of Motion Stability. Leningrad: Leningrad Univ. Press, 1963.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (39KB)

Copyright (c) 2023 С.В. Нестеров

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).