Wave Motion in a Surface Electric Charged Viscous Homogeneous Liquid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of the surface electric charge on the character and properties of wave motion along the free surface of a viscous homogeneous liquid has been investigated by analytical asymptotic methods. Expressions describing the dispersion dependences of the wave motion components are obtained. The phase and group velocities of the structures forming the wave motion are determined.

Sobre autores

A.A. Ochirov

Ishlinsky Institute for Problems in Mechanics RAS

Autor responsável pela correspondência
Email: otchirov@mail.ru
Russia, Moscow

Yu. Chashechkin

Ishlinsky Institute for Problems in Mechanics RAS

Autor responsável pela correspondência
Email: yulidch@gmail.com
Russia, Moscow

Bibliografia

  1. Rayleigh On waves // Phil. Mag., 1876, vol. 1, pp. 257–259.
  2. Stokes G.G. On the theory of oscillatory waves // Trans. Cam. Philos. Soc., 1847, vol. 8. pp. 441–455.
  3. Sretenskii L.N. On waves on the surface of a viscous fluid // Tr. TsAGI, 1941, no. 541, pp. 1–34. (in Russian)
  4. Lamb H. Hydrodynamics. Cambridge: Univ. Press, 1924.
  5. Whitham G.B. Linear and Nonlinear Waves. N.Y.: Wiley, 1999. 660 p.
  6. Lighthill J. Waves in Fluids. Cambridge: Univ. Press, 1978. 524 p.
  7. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Int. Ser. of Monographs on Physics. Oxford: Clarendon, 1961 685 p.
  8. Landau L.D., Lifshitz E.M. Course of Theoretical Physics. V. 6. Fluid Mechanics. Oxford: Pergamon, 1987; 560 p.
  9. Kochin N.E., Kibel I.A., Roze N.V. Theoretical Hydromechanics. Intersci. Pub., 1964, vol. 1.
  10. Levich V.G. Physicochemical Hydrodynamics, Englewood Cliffs. N.Y.: Prentice-Hall, 1962.
  11. Chashechkin Yu.D. Transfer of the substance of a colored drop in a liquid layer with travelling plane gravity-capillary waves // Izv. Atmos. Ocean. Phys., 2022, vol. 58, pp. 188–197. https://doi.org/10.1134/S0001433822020037
  12. Grzonka L., Cieślikiewicz W. Mass transport induced by nonlinear surface gravity waves // Copernicus Meetings, 2023, no. EGU23-16788.
  13. Druzhinin O.A., Tsai W.T. Numerical simulation of micro-bubbles dispersion by surface waves // Algorithms, 2022, vol. 15, no. 4, pp. 110.
  14. Kalinichenko V.A. Regularization of barotropic gravity waves in a two-layer fluid // Fluid Dyn., 2019, vol. 54, no. 6, pp. 761–773.
  15. Kalinichenko V.A. Standing gravity waves on the surface of a viscous liquid // Fluid Dyn., 2022, vol. 57, no. 7, pp. 891–899.
  16. Abrashkin A.A., Bodunova Yu.P. Spatial standing waves on the surface of viscous fluid // Tr. Nizhegorod. Gos. Tekh. Univ. im. R.E. Alekseeva, Mekh. Zhidk. Gaza, 2011, no. 2 (87), pp. 49–54.
  17. Rudenko A.I. Two types of waves in a two-layer stratified liquid // Act. Probl. of Appl. Math., Comput. Sci.&Mech., 2022, pp. 1450–1456.
  18. Chashechkin Yu., Ochirov A., Lapshina K.Y. Surface waves along the interface of stably stratified liquids // Phys.-Chem. Kin. in Gas Dyn., 2022, vol. 23, iss. 6.
  19. Chashechkin Yu.D., Ochirov A.A. Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field // Axioms, 2022, vol. 11, no. 8, pp. 402.
  20. Roach L.A. et al. Advances in modeling interactions between sea ice and ocean surface waves // J. Adv. in Modeling Earth Syst., 2019, vol. 11, no. 12, pp. 4167–4181.
  21. Buckley M.P., Veron F. The turbulent airflow over wind generated surface waves // Eur. J. Mech.-B/Fluids, 2019, vol. 73, pp. 132–143.
  22. Ersoy N.E., Eslamian M. Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film // Phys. Fluids, 2019, vol. 31, no. 1, pp. 012107.
  23. Il’inykh A.Y., Chashechkin Yu.D. Fine structure of the spreading pattern of a freely falling droplet in a fluid at rest // Fluid Dyn., 2021, vol. 56, no. 4, pp. 445–450.
  24. Chashechkin Yu.D. Packages of capillary and acoustic waves of the impact of a drop // Bull. of the Bauman Moscow State Tech. Univ. Ser. Nat. Sci., 2021, no. 1 (94), pp. 73–91.
  25. Chashechkin Yu.D. Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids // Izv. Atmos. Ocean. Phys., 2019, vol. 55, pp. 285–294. https://doi.org/10.1134/S0001433819020026
  26. Tonks L. A theory of liquid surface rupture by a uniform electric field // Phys. Rev., 1935, vol. 48, no. 6, pp. 562.
  27. Frenkel Ya.I. The Tonks theory on disruption of liquid surface by constant electric field in vacuum // Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350. (in Russian)
  28. Taylor G.I. Disintegration of water drops in an electric field // Proc. Roy. Soc. London, 1964, vol. A280, pp. 383–397.
  29. Grigor’ev A.I., Kolbneva N.Y., Shiryaeva S.O. Nonlinear monopole and dipole acoustic radiation of a weakly charged droplet oscillating in a uniform electrostatic field // Fluid Dyn., 2022, vol. 57, no. 8, pp. 982–997.
  30. Zhuravleva E.N. et al. A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary // Theor.&Math. Phys., 2020, vol. 202, no. 3, pp. 344–351.
  31. Belonozhko D.F., Grigor’ev A.I. Nonlinear periodic waves on the charged surface of a deep low-viscosity conducting liquid // Tech. Phys., 2004, vol. 49, no. 3, pp. 287–295.
  32. Chashechkin Yu.D. Foundations of engineering mathematics applied for fluid flows // Axioms, 2021, vol. 10, no. 4, pp. 286.
  33. Nayfeh A.H. Introduction to Perturbation Technique. N.Y.: John Wiley&Sons, 1993. 536 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (60KB)
3.

Baixar (54KB)
4.

Baixar (144KB)
5.

Baixar (210KB)
6.

Baixar (139KB)
7.

Baixar (116KB)
8.

Baixar (115KB)
9.

Baixar (59KB)

Declaração de direitos autorais © А.А. Очиров, Ю.Д. Чашечкин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies