Flow Structure of a Three-Dimensional Turbulent Wall Jet

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A numerical simulation is conducted to study the flow of a three-dimensional incompressible wall jet. The study is aimed to determine the flow structure and to compare the propagation mechanisms of turbulent and laminar wall jets. The numerical solution of the Navier–Stokes equations in the turbulent case is obtained using the wall-resolved large eddy simulation. The simulation results are compared with experimental data.

Sobre autores

A. Gaifullin

Zhukovksy Central Aerohydrodynamic Institute

Autor responsável pela correspondência
Email: gaifullin@tsagi.ru
Russia, Zhukovsky

A. Shcheglov

Zhukovksy Central Aerohydrodynamic Institute

Autor responsável pela correspondência
Email: shcheglov@phystech.edu
Russia, Zhukovsky

Bibliografia

  1. Akatnov N.I. Propagation of a plane laminar jet of incompressible liquid along a solid wall // Tr. Leningr. Politekhn. In-ta, Energomash., Tekh. Gidromekh., 1953, no. 5, pp. 24–31. (in Russian)
  2. Glauert M.B. The wall jet // J. Fluid Mech., 1956, vol. 1, pp. 625–643.
  3. Schlichting H. Laminare Strahlausbreitung // Z. Angew. Math. Mech., 1933, Bd. 13, H. 4, pp. 260–263.
  4. Landau L.D. A new exact solution of the Navier–Stokes equations // Dokl. Akad. Nauk SSSR, 1944, Т. 43, no. 7, pp. 299–301. (in Russian)
  5. But I.I., Gaifullin A.M., Zhvick V.V. Far field of a three-dimensional laminar wall jet // Fluid Dyn., 2021, no. 6, pp. 51–61.
  6. Gaifullin A.M., Shcheglov A.S. Self-similarity of a wall jet with swirl // Lobachevskii J. Math., 2022, vol. 43, no. 5, pp. 1098–1103.
  7. Newman B., Patel R., Savage S., Tjio H. Three-dimensional wall jet originating from a circular orifice // Aeron. Quart., 1972, vol. 23, no. 3, pp. 188–200.
  8. Matsuda H., Iida S., Hayakawa M. Coherent structures in a three-dimensional wall jet // ASME. J. Fluids Eng., 1990, vol. 112, no. 4, pp. 462–467.
  9. Padmanabham G., Lakshmana Gowda B.H. Mean and turbulence characteristics of a class of three-dimensional wall jets. Pt. 1: Mean flow characteristics // ASME. J. Fluids Eng., 1991, vol. 113, no. 4, pp. 620–628.
  10. Law A.W.-K., Herlina. An experimental study on turbulent circular wall jets // J. Hydraul. Eng., 2002, vol. 128, no. 2, pp. 161–174.
  11. Sun H., Ewing D. Effect of initial and boundary conditions on development of three-dimensional wall jets // 40th AIAA Aerosp. Sci. Meeting & Exhibit., 2002, pp. 733.
  12. Hall J.W., Ewing D. Three-dimensional turbulent wall jets issuing from moderate-aspect-ratio rectangular channels // AIAA J., 2007, vol. 45, pp. 1177–1186.
  13. Inoue Y., Yano H., Yamashita S. Experimental study on a three-dimensional wall jet // J. Fluid Sci.&Technol., 2007, vol. 2, no. 3, pp. 655–664.
  14. Namgyal L., Hall J. Reynolds stress distribution and turbulence generated secondary flow in the turbulent three-dimensional wall jet // J. Fluid Mech., 2016, vol. 800, pp. 613–644.
  15. Agelin-Chaab M., Tachie M.F. Characteristics of turbulent three-dimensional wall jets // ASME. J. Fluids Eng., 2011, vol. 133, no. 2.
  16. Pani B.S., Rajaratnam N. Swirling circular turbulent wall jets // J. Hydraul. Res., 1976, vol. 14, no. 2, pp. 145–154.
  17. Kumar S., Kumar A. Effect of initial conditions on mean flow characteristics of a three dimensional turbulent wall jet // Proc. Inst. Mech. Engineers, Pt. C: J. Mech. Engng. Sci., 2021, vol. 235, no. 22, pp. 6177–6190.
  18. Craft T., Launder B. On the spreading mechanism of the three-dimensional turbulent wall jet // J. Fluid Mech., 2001, vol. 435, pp. 305–326.
  19. Khosronejad A., Rennie C.D. Three-dimensional numerical modeling of unconfined and confined wall-jet flow with two different turbulence models // Canadian J. Civil Engng., 2010, vol. 37, no. 4, pp. 576–587.
  20. Kakka P., Anupindi K. Flow and thermal characteristics of three-dimensional turbulent wall jet // Phys. Fluids, 2021, vol. 33, no. 2.
  21. Nicoud F., Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor // Flow, Turbul.&Combust., 1999, vol. 62, no. 3, pp. 183–200.
  22. Van Doormaal J.P., Raithby G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flows // Numer. Heat Transfer, 1984, vol. 7, no. 2, pp. 147–163.
  23. Menter F.R. Best Practice: Scale-Resolving Simulations in Ansys CFD. https://www.ansys.com/content/dam/product/fluids/cfd/tb-best-practices-scale-resolving-models.pdf

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (485KB)
3.

Baixar (137KB)
4.

Baixar (112KB)
5.

Baixar (59KB)
6.

Baixar (214KB)
7.

Baixar (93KB)
8.

Baixar (68KB)
9.

Baixar (198KB)
10.

Baixar (537KB)
11.

Baixar (527KB)
12.

Baixar (575KB)
13.

Baixar (657KB)
14.

Baixar (643KB)
15.

Baixar (624KB)

Declaração de direitos autorais © А.М. Гайфуллин, А.С. Щеглов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies