Asymptotics of Long Standing Waves in One-Dimensional Basins with Shallow Coasts: Theory and Experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We construct time-periodic asymptotic solutions of the one-dimensional system of nonlinear shallow water equations in a basin of variable depth \(D\left( x \right)\) with two shallow coasts (which means that the function \(D\left( x \right)\) vanishes at the points defining the coast) or with one shallow coast and a vertical wall. Such solutions describe standing waves similar to the well-known Faraday waves in basins with vertical walls. In particular, they approximately describe seiches in elongated basins. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator \(d{\text{/}}dxD(x)d{\text{/}}dx\) are determined, and then, using a recently developed approach based on the simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment.

About the authors

S .Yu. Dobrokhotov

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: s.dobrokhotov@gmail.com
Russia, Moscow

V. A. Kalinichenko

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: vakalin@mail.ru
Russia, Moscow

D. S. Minenkov

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: minenkov.ds@gmail.com
Russia, Moscow

V. E. Nazaikinskii

Ishlinsky Institute for Problems in Mechanics RAS

Author for correspondence.
Email: nazaikinskii@yandex.ru
Russia, Moscow

References

  1. Stoker J.J. Water Waves: The Mathematical Theory with Applications. N.Y.: Wiley, 1958. 609 p.
  2. Sretenskii L.N. Theory of Fluid Wave Motions. Moscow: Nauka, 1977. (in Russian)
  3. Mei C.C. The Applied Dynamics of Ocean Surface Waves. Singapore: World Sci., 1989. 768 p.
  4. Pelinovsky E.N. Hydrodynamics of Tsunami Waves. N. Novgorod: IAP RAS, 1996. 276 p. (in Russian)
  5. Pelinovsky E.N., Mazova R.Kh. Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles // Natural Hazards, 1992, vol. 6, no. 3, pp. 227–249.
  6. Lamb H. Hydrodynamics. Cambridge: Univ. Press, 1932. 738 p.
  7. Chrystal G. XXV. On the hydrodynamical theory of seiches // Trans. Roy. Soc. Edinburgh, 1906, vol. 41, pp. 599–649.
  8. Obolenskii V.N. Seiches and their theory // Zapiski po Gidrografii, 1919, vol. 43, no. 2, pp. 13–76. (in Russian)
  9. Rabinovich A.B. Seiches and harbor oscillations // Handbook of Coastal&Ocean Engng., 2009, pp. 193–236.
  10. Arsenneva N.M., Davydov L.K., Dubrovina L.N., Konkina N.G. Seiches on the USSR Lakes. Leningrad: Univ. Press, 1963. 184 p. (in Russian)
  11. Zyryanov V.N. Under-ice seiches // Water Res., 2011, vol. 38, no. 3, pp. 261–273.
  12. Smirnov S.V., Kucher K.M., Granin N.G., Sturova I.V. Seiche oscillations in Lake Baikal // Izv. Atmos&.Oceanic Phys., 2014, vol. 50, no. 1, pp. 92–102.
  13. Oleinik O.A., Radkevich E.V. Second Order Equations with Nonnegative Characteristic Form. Providence, Rhode Island: Plenum Press, 1973. vii + 259 p.
  14. Vukašinac T., Zhevandrov P. Geometric asymptotics for a degenerate hyperbolic equation // Russ. J. Math. Phys., 2002, vol. 9, no. 3, pp. 371–381.
  15. Vladimirov V.S. Equations of Mathematical Physics. Moscow: Dekker, 1971. 418 p.
  16. Birman M., Solomjak M. Spectral Theory of Self-Adjoint Operators in Hilbert Space. Dordrecht, Holland: D. Reidel Pub. Co., 1987. xvi + 302 p.
  17. Dobrokhotov S.Yu., Nazaikinskii V.E. Nonstandard Lagrangian singularities and asymptotic eigenfunctions of the degenerating operator // Proc. Steklov Inst. Math., 2019, vol. 306, pp. 74–89.
  18. Dobrokhotov S.Yu., Minenkov D.S., Nazaikinskii V.E. Asymptotic solutions of the Cauchy problem for the nonlinear shallow water equations in a basin with a gently sloping beach // Russ. J. Math. Phys., 2022, vol. 29, pp. 28–36.
  19. Carrier G.F., Greenspan H.P. Water waves of finite amplitude on a sloping beach // J. Fluid Mech., 1958, vol. 4, pp. 97–109.
  20. http://www.ipmnet.ru/uniqequip/gfk/#aboutDSO
  21. Kalinichenko V.A., Nesterov S.V., Sekerzh-Zennkovich S.Ya., Chaykovskii A.V. Experimental study of surface waves with Faraday resonance excitation // Fluid Dyn., 1995, vol. 30, no. 1, pp. 101–106.
  22. White P., Watson W. Some experimental results in connection with the hydrodynamical theory of seiches. // Proc. R. Soc. Edinb., 1906, vol. 26, no. 01, pp. 142–156.
  23. Kalinichenko V.A., Sekerzh-Zennkovich S.Y. Experimental investigation of Faraday waves of maximum height // Fluid Dyn., 2007, vol. 42, no. 6, pp. 959–965.
  24. Kalinichenko V.A., Nesterov S.V., Soe A.N. Faraday waves in a rectangular reservoir with local bottom irregularities // Fluid Dyn., 2015, vol. 50, no. 4, pp. 535–542.
  25. Kalinichenko V.A., Nesterov S.V., Soe A.N. Standing surface waves in a rectangular tank with local wall and bottom irregularities // Fluid Dyn., 2017, vol. 52, no. 2, pp. 230–238.
  26. Dobrokhotov S.Yu., Tirozzi B. Localized solutions of one-dimensional non-linear shallow-water equations with velocity // Rus. Math. Surveys, 2010, vol. 65, no. 1, pp. 177–179.
  27. Dobrokhotov S.Yu., Medvedev S.B., Minenkov D.S. On replacements reducing one-dimensional systems of shallow-water equations to the wave equation with sound speed // Math. Notes, 2013, vol. 93, no. 5, pp. 704–714.
  28. Chirkunov Yu.A., Dobrokhotov S.Yu., Medvedev S.B., Minenkov D.S. Exact solutions of one-dimensional nonlinear shallow water equations over even and sloping bottoms // Theor.&Math. Phys., 2014, vol. 178, pp. 278–298.
  29. Didenkulova I., Pelinovsky E. Non-dispersive traveling waves in inclined shallow water channels // Phys. Lett. A, 2009, vol. 373, no. 42, pp. 3883–3887.
  30. Rybkin A., Pelinovsky E., Didenkulova I. Non-linear wave run-up in bays of arbitrary cross-section: generalization of the Carrier–Greenspan approach // J. Fluid Mech., 2014, vol. 748, pp. 416–432.
  31. Anderson D., Harris M., Hartle H. et al. Run-up of long waves in piecewise sloping u-shaped bays // Pure Appl. Geophys., 2017, vol. 174, pp. 3185–3207.
  32. Rybkin A., Nicolsky D., Pelinovsky E., Buckel M. The generalized Carrier–Greenspan transform for the shallow water system with arbitrary initial and boundary conditions // Water Waves, 2021, vol. 3, no. 1, pp. 267–296.
  33. Antuono M., Brocchini M. The boundary value problem for the nonlinear shallow water equations // Studies in Appl. Math., 2007, vol. 119, no. 1, pp. 73–93.
  34. Minenkov D.S. Asymptotics of the solutions of the one-dimensional nonlinear system of equations of shallow water with degenerate velocity // Math. Notes, 2012, vol. 92, no. 5, pp. 664–672.
  35. Chugunov V.A., Fomin S.A., Noland W., Sagdiev B.R. Tsunami runup on a sloping beach // Comp.&Math. Meth., 2020, vol. 2, pp. e1081.
  36. Minenkov D.S. Asymptotics near the shore for 2D shallow water over sloping planar bottom // Days on Difraction (DD), St. Petersburg, 2017, pp. 240–243.
  37. Aksenov A.V., Dobrokhotov S.Yu., Druzhkov K.P. Exact step-like solutions of one-dimensional shallow-water equations over a sloping bottom // Math. Notes, 2018, vol. 104, no. 6, pp. 915–921.
  38. Bogolujbov N.N., Mitropolski Yu.A. Asymptotic Methods in the Theory of Non-Linear Oscillations. N.Y.: Gordon&Breach, 1962. 537 p.
  39. Arnold V.I. Mathematical Methods of Classical Mechanics. Springer, 1989. 536 p.
  40. Arnold V.I., Kozlov V.V., Neishtadt A.I. Mathematical Aspects of Classical and Celestial Mechanics. Berlin: Springer, 2006. xiii+505 p.
  41. Galvin C.J. Breaker type classification on three laboratory beaches // J. Geophys. Res., 1968, vol. 73, no. 12, pp. 3651–3659.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (149KB)
3.

Download (160KB)
4.

Download (2MB)
5.

Download (995KB)
6.

Download (1MB)
7.

Download (122KB)

Copyright (c) 2023 С.Ю. Доброхотов, В.А. Калиниченко, Д.С. Миненков, В.Е. Назайкинский

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».