Использование метода молекулярно-пучковой масс-спектрометрии для исследования процесса рассеяния частиц кластированного газового потока
- Authors: Деринг Е.Д.1, Дубровин К.А.1, Зарвин А.Е.1, Каляда В.В.1, Художитков В.Э.1
-
Affiliations:
- Новосибирский национальный исследовательский государственный университет
- Issue: No 5 (2024)
- Pages: 196-204
- Section: ЛАБОРАТОРНАЯ ТЕХНИКА
- URL: https://journals.rcsi.science/0032-8162/article/view/285745
- DOI: https://doi.org/10.31857/S0032816224050225
- EDN: https://elibrary.ru/EQYVLY
- ID: 285745
Cite item
Abstract
Метод молекулярно-пучковой масс-спектрометрии (МПМС) адаптирован на газодинамическом стенде ЛЭМПУС-2 для исследования процесса рассеяния частиц свободномолекулярного газового потока на частицах фонового окружения. Проведена верификация использованной методики в неконденсирующихся потоках, результаты измерения эффективных сечений рассеяния атомов аргона и молекул азота сопоставлены с известными литературными данными. Исследован процесс рассеяния атомов и малых кластеров (олигомеров) аргона на находящемся в фоновом пространстве диоксиде углерода при различных средних размерах кластеров, образующихся в потоке ⟨N⟩. При ⟨N⟩ ≈ 48 полученные значения сечений рассеяния для атомов, димеров и тримеров аргона составили 39, 17 и 6 Å2 соответственно. Установлено, что с ростом среднего размера кластеров в потоке эффективное сечение рассеяния атомов аргона уменьшается. Обсуждаются причины возникновения обнаруженного эффекта, а также особенности использования МПМС для исследования сверхзвуковых кластированных потоков.
Full Text

About the authors
Е. Д. Деринг
Новосибирский национальный исследовательский государственный университет
Author for correspondence.
Email: e.dering@g.nsu.ru
Russian Federation, 630090, Новосибирск, ул. Пирогова, 2
К. А. Дубровин
Новосибирский национальный исследовательский государственный университет
Email: e.dering@g.nsu.ru
Russian Federation, 630090, Новосибирск, ул. Пирогова, 2
А. Е. Зарвин
Новосибирский национальный исследовательский государственный университет
Email: e.dering@g.nsu.ru
Russian Federation, 630090, Новосибирск, ул. Пирогова, 2
В. В. Каляда
Новосибирский национальный исследовательский государственный университет
Email: e.dering@g.nsu.ru
Russian Federation, 630090, Новосибирск, ул. Пирогова, 2
В. Э. Художитков
Новосибирский национальный исследовательский государственный университет
Email: e.dering@g.nsu.ru
Russian Federation, 630090, Новосибирск, ул. Пирогова, 2
References
- Lazarev A.V., Semenov T.A., Belega E.D., Gordienko V.M. // J. Supercrit. Fluids. 2022. V. 187. P. 105631. https://doi.org/10.1016/j.supflu.2022.105631
- Ganeva M., Kashtanov P.V., Smirnov B.M., Hippler R. // Vacuum. 2014. V. 110. P. 140. https://doi.org/10.1016/j.vacuum.2014.08.019
- Haberland H. Clusters of atoms and molecules: theory, experiment, and clusters of atoms. Berlin: Springer, 2013. 422. https://doi.org/10.1007/978-3-642-84329-7
- Johnston R.L. Atomic and molecular clusters. CRC Press. 2002.
- Popok V.N. // Mater. Sci. Engin.: R: Reports. 2011. V. 72. № 7–8. P. 137. https://doi.org/10.1016/j.mser.2011.03.001
- Rao B.K., Khanna S.N., Jena P. // J. Cluster Science. 1999. V. 10. P. 477. https://doi.org/10.1023/A:1021948806958
- Yamada I., Matsuo J., Toyoda N., Aoki T., Seki T. // Current Opinion in Solid State and Materials Science. 2015. V. 19. № 1. P. 12. https://doi.org/10.1016/j.cossms.2014.11.002
- Hagena O.F. // Rev. Sci. Instrum. 1992. V. 63. № 4. P. 23749. https://doi.org/10.1063/1.1142933
- Dubrovin K.A. Zarvin A.E., Kalyada V.V., Yaskin A.S., Dering E.D. // Vacuum. 2023. P. 112652. https://doi.org/10.1016/j.vacuum.2023.112652
- Zarvin A.E., Khudozhitkov V.E., Kalyada V.V. // IOP Conf. Series: Materials Science and Engineering. 2018. V. 387. № 1. P. 012086. https://iopscience.iop.org/article/10.1088/1757-899X/ 387/1/012086/meta
- Кисляков Н.И., Ребров А.К., Шарафутдинов Р.Г. // ПМТФ. 1975. № 2. С. 42.
- Зарвин А.Е., Яскин А.С., Каляда В.В., Ездин Б.С. // Письма в ЖТФ. 2015. Т. 41. № 22. С. 74.
- Рамзей Н. Молекулярные пучки. Москва: ИЛ. 1960.
- Леонас В. Б. // УФН. 1964. Т. 82. № 2. С. 287.
- Калинин А.П., Родионова И.П., Родионов И.Д // Физико-химическая кинетика в газовой динамике. 2007. № 5. С. 135.
- http://www.chemphys.edu.ru/pdf/2007-07-27-001.pdf
- Zarvin A.E., Kalyada V.V., Madirbaev V.Zh., Korobeishchikov N.G., Khodakov M.D., Yaskin A.S., Khudozhitkov V.E., Gimelshein S.F. // IEEE Transactions on Plasma Science. 2017. V. 45. № 5. P. 819. https://doi.org/10.1109/TPS.2017.2682901 https://opf.nsu.ru/ru
- Абрамович Г.Н. Прикладная газовая динамика. Т. 1. Москва: Наука. 1991.
- Rothe E.W., Neynaber R.H. // J. Chem. Phys. 1965. V. 43. № 11. P. 41779. https://doi.org/10.1063/1.1696664
- Van Deursen A., Reuss J. // Int. J. Mass Spectr. Ion Phys. 1973. V. 11. № 5. P. 483. https://doi.org/10.1016/0020-7381(73)80077-4
- Fedor J., Poterya V., Pysanenko S. Franik M. // J. Chem. Phys. 2011. V. 135. № 10. P. 104305. https://doi.org/10.1063/1.3633474
- Phelps A.V. // J. Phys. Chem. Ref. Data. 1991. V. 20. № 3. P. 557. https://doi.org/10.1063/1.555889
- Rothe E.W. Marino L.L., Neynaber R.H., Rol P.K., Trujillo S.M. // Phys. Rev. 1962. V. 126. № 2. P. 598.
- Nenner T., Tien H., Fenn J.B. // J. Chem. Phys. 1975. V. 63. № 12. P. 54394. https://doi.org/10.1063/1.431278
- Skovorodko P.A. // AIP Conf. Proc. 2011. V. 1333 P. 601. https://doi.org/10.1063/1.3562713
- Korobeishchikov N.G., Skovorodko P.A., Kalyada V.V., Shmakov A.A., Zarvin A.E. // AIP Conf. Proc. 2014. V. 1628. P. 885. https://doi.org/10.1063/1.4902687
- Schütte S., Buck U // Int. J. Mass Spectrom. 2002. V. 220. № 2. P. 183. https://doi.org/10.1016/S1387-3806(02)00670-X
- Ермолаева Н.В., Иванов М.С., Куснер Ю.С., Николаев В.И. // ЖТФ. 1986. Т. 56. № 10. С. 18732.
- Зарвин А.Е., Каляда В.В., Художитков В.Э. // Теплофизика и аэромеханика. 2017. Т. 24. № 5. С. 691.
Supplementary files
