A New Method for Motion Artifact Suppression in Spectral-Domain Optical Coherence Tomography
- Authors: Ksenofontov S.Y.1, Shilyagin P.A.1, Terpelov D.A.1, Shabanov D.V.1, Gelikonov V.M.1, Gelikonov G.V.1
-
Affiliations:
- Gaponov-Grekhov Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
- Issue: No 6 (2023)
- Pages: 154-161
- Section: ФИЗИЧЕСКИЕ ПРИБОРЫ ДЛЯ ЭКОЛОГИИ, МЕДИЦИНЫ, БИОЛОГИИ
- URL: https://journals.rcsi.science/0032-8162/article/view/233274
- DOI: https://doi.org/10.31857/S0032816223050312
- EDN: https://elibrary.ru/LCALDX
- ID: 233274
Cite item
Abstract
A new method for processing spectral-domain optical coherence tomography signals, which is designed to effectively suppress motion artifacts under conditions of large probing depths, is described. The features of this method made it possible to use it as part of an otoscopic system of spectral-domain optical coherence tomography, which ensured high quality of real-time imaging.
About the authors
S. Yu. Ksenofontov
Gaponov-Grekhov Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: xen@appl.sci-nnov.ru
603950, Nizhny Novgorod, Russia
P. A. Shilyagin
Gaponov-Grekhov Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: xen@appl.sci-nnov.ru
603950, Nizhny Novgorod, Russia
D. A. Terpelov
Gaponov-Grekhov Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: xen@appl.sci-nnov.ru
603950, Nizhny Novgorod, Russia
D. V. Shabanov
Gaponov-Grekhov Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: xen@appl.sci-nnov.ru
603950, Nizhny Novgorod, Russia
V. M. Gelikonov
Gaponov-Grekhov Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Email: xen@appl.sci-nnov.ru
603950, Nizhny Novgorod, Russia
G. V. Gelikonov
Gaponov-Grekhov Federal Research Center Institute of Applied Physics, Russian Academy of Sciences
Author for correspondence.
Email: xen@appl.sci-nnov.ru
603950, Nizhny Novgorod, Russia
References
- Optical coherence tomography: Technology and applications / Ed. W. Drexler, J.G. Fujimoto. Sec. ed. Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-06419-2
- Геликонов В.М., Геликонов Г.В., Терпелов Д.А., Шилягин П.А. // ПТЭ. 2012. № 3. С. 100.
- Терпелов Д.А., Ксенофонтов С.Ю., Геликонов Г.В., Геликонов В.М., Шилягин П.А. // ПТЭ. 2017. № 6. С. 94. https://doi.org/10.7868/S0032816217060143
- Ксенофонтов С.Ю., Купаев А.В., Василенкова Т.В., Терпелов Д.А., Шилягин П.А., Моисеев А.А., Геликонов Г.В. // ПТЭ. 2021. № 5. С. 131. https://doi.org/10.31857/S0032816221040224
- Leitgeb R.A., Wojtkowski M. Optical coherence tomography: Technology and applications / Ed. W. Drexler, J.G. Fujimoto. Sec. Ed. Berlin: Springer, 2015. P. 195. https://doi.org/10.1007/978-3-319-06419-2_7
- Fercher A.F. // J. Biomedical Optics. 1996. V. 1. № 2. P. 157. https://doi.org/10.1117/12.231361
- Геликонов В.М., Геликонов Г.В., Касаткина И.В., Терпелов Д.А., Шилягин П.А. // Оптика и спектроскопия. 2009. Т. 106. С. 983.
- Ai J., Wang L.V. // Opt. Lett. 2005. V. 30. P. 2939. https://doi.org/10.1364/OL.30.002939
- Leitgeb R.A., Hitzenberger C.K., Fercher A.F., Bajraszewski T. // Opt. Lett. 2003. V. 28. P. 2201. https://doi.org/10.1364/OL.28.002201
- Ксенофонтов С.Ю., Шилягин П.А., Терпелов Д.А., Новожилов А.А., Геликонов В.М., Геликонов Г.В. // ПТЭ. 2020. № 1. С. 136. https://doi.org/10.31857/S003281622001005X
- Ксенофонтов С.Ю. // ПТЭ. 2019. № 3. С 17. https://doi.org/10.1134/S0032816219030078
Supplementary files
