Device for Polarization of Polymer Films in the Field of a Barrier Type Surface Corona Discharge
- Authors: Bakulin I.A.1, Kuznetsov S.I.1, Panin A.S.1, Tarasova E.Y.1
-
Affiliations:
- Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences
- Issue: No 2 (2023)
- Pages: 144-149
- Section: ЛАБОРАТОРНАЯ ТЕХНИКА
- URL: https://journals.rcsi.science/0032-8162/article/view/138350
- DOI: https://doi.org/10.31857/S0032816223020039
- EDN: https://elibrary.ru/PXMUDG
- ID: 138350
Cite item
Abstract
A device for the polarization of polymer films in the electric field of a barrier-type surface corona discharge is described, and the features of its operation are considered. The possibility of obtaining a uniform distribution of the potential of charges deposited on the polymer surface is demonstrated. Using the method of X-ray phase analysis, it is shown that the proposed method of polarization makes it possible to create an electric field on the surface of a composite film of polyvinylidene fluoride + PZT-ceramic, the intensity of which is sufficient to initiate the phase transition α → β in the polymer.
About the authors
I. A. Bakulin
Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences
Email: anton@fian.smr.ru
443011, Samara, Russia
S. I. Kuznetsov
Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences
Email: anton@fian.smr.ru
443011, Samara, Russia
A. S. Panin
Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences
Email: anton@fian.smr.ru
443011, Samara, Russia
E. Yu. Tarasova
Samara Branch of the Lebedev Physical Institute, Russian Academy of Sciences
Author for correspondence.
Email: anton@fian.smr.ru
443011, Samara, Russia
References
- Ameduri B. // Chem. Rev. 2009. V. 109. № 12. P. 6632. https://doi.org/10.1021/cr800187m
- Wenjing J., Hua Deng, Cong Guo, Chengxiao Sun, Xuan Guo, Feng Chen, Qiang Fu // Composites Part A. 2019. V. 118. P. 336. https://doi.org/10.1016/j.compositesa.2019.01.011
- Peng Han, Shengli Pang, Jingbo Fan, Xiangqian Shen, Tiezheng Pan // Sensors and Actuators A. 2013. V. 204. P. 74. https://doi.org/10.1016/j.sna.2013.10.011
- Sencadas V., Lanceros-Méndez S., Mano J.F. // Thermochimica Acta. 2004. V. 424. P. 201. https://doi.org/10.1016/j.tca.2004.06.006
- Shichen Deng, Jiale Yuan, Yuli Lin, Xiaoxiang Yu, Dengke Ma, Yuwen Huang, Rencai Ji, Guangzu Zhang, Nuo Yang // Nano Energy. 2021. V. 82. P. 105749 (7). https://doi.org/10.1016/j.nanoen.2021.105749
- Hill R.A., Knoesen A., Mortazavi Corona M.A. // Appl. Phys. Lett. 1994. V. 65. Iss. 14. P. 1733. https://doi.org/10.1063/1.112899
- Davis G.T., McKinney J.E., Broadhurst M.G., Roth S.C. // J. Appl. Phys. 1978. V. 49. № 10. P. 4998. https://doi.org/10.1063/1.324446
- Von Seggern Heinz, Tsuey T. Wang // Patent US 4512941. Apr. 23, 1985.
- Ohwaki J., Yamazaki H., Kitayama T. // J. Appl. Phys. 1981. V. 52. № 11. P. 6856. https://doi.org/10.1063/1.328678
- Бойцов В.Г., Тазенков Б.А., Скугарев А.С., Перепелица Л.А. А.с. № 1102395 СССР. // Опубл. 23.03.1987. Бюл. № 11.
- Бударина Л.А., Шевцова С.А., Габайдуллин М.Р., Дебердеев Р.Я., Якункин М.М. Патент РФ 2066890 // Опубл. 20.09.1996.
- Zhong F., Kitchens J.C., Fennel L.E., Buchan N.I. Patent US 2018/0198055. Publ. Jul.12, 2018.
- Giacometti J.A., Oliveira O.N. // IEEE Transactions on Electrical Insulation. 1992. V. 27. № 5. P. 924. https://doi.org/10.1109/14.256470
- Тарасова Е.Ю., Журавлева И.И., Бакулин И.А., Кузнецов С.И., Панин А.С. // Письма в ЖТФ. 2021. Т. 47. № 23. С. 15. https://doi.org/10.21883/PJTF.2021.23.51777.18913
- Ибрагимова А.И., Журавлева И.И., Кузнецов С.И., Панин А.С., Тарасова Е.Ю. // Краткие сообщения по физике ФИАН. 2019. Т. 46. № 4. С. 14. https://doi.org/10.3103/S1068335619040031
- Zhaoliang Cui, Naser Tavajohi Hassankiadeh, Yongbing Zhuang, Enrico Drioli, Young Moo Lee // Progress in Polymer Science. 2015. V. 51. P. 94. https://doi.org/10.1016/j.progpolymsci.2015.07.007
Supplementary files
