Features of the Processes of Initiation and Development of Sparks in Microstructural Gas Detectors (Review)
- Authors: Razin V.I.1
-
Affiliations:
- Institute of Nuclear Research, Russian Academy of Sciences
- Issue: No 2 (2023)
- Pages: 5-14
- Section: Articles
- URL: https://journals.rcsi.science/0032-8162/article/view/138317
- DOI: https://doi.org/10.31857/S0032816223020258
- EDN: https://elibrary.ru/GTQOAR
- ID: 138317
Cite item
Abstract
The features of the processes of initiation and development of spark discharges in microstructural gas detectors of ionizing radiation in laboratory conditions and on charged-particle beams in accelerators are considered. Such aspects as the Raether charge limit, secondary electron emission, avalanche cross-overlap, positive ion feedback, explosive electron emission, cascading of detectors, and the charge density have been analyzed in detail. The better understanding of these effects will make it possible to make a further step in the development of new-type position-sensitive gas detectors.
About the authors
V. I. Razin
Institute of Nuclear Research, Russian Academy of Sciences
Author for correspondence.
Email: razin@inr.ru
117312, Moscow, Russia
References
- Sauli F. // Nucl. Instrum. and Methods Phys. Res. A. 1997. V. 386. № 2−3. P. 531. https://doi.org/10.1016/S0168-9002(96)01172-2
- Raether H. // Electron Avalanches and Breakdown in Gases. London: Butterworths,1964.
- Разин В.И. // ПТЭ. 2021. № 6. С. 5. https://doi.org/10.31857/S0032816221060057
- Francke T., Peskov V. Innovative Applications and Developments of Micro-Pattern Gaseous Detectors. IGI global, 2014. http://doi.org./10.4018/978-1-4666-6014-4
- Thers D., Abbon P., Ball J., Bedfer Y., Bernet C., Carasco C., Delagnes E., Durand D., Faivre J.-C., Fonvieille H., Giganon A., Kunne F., Le Goff J.-M., Lehar F., Magnon A. et al. // Nucl. Instrum. and Methods Phys. Res. A. 2001. V. 416. P. 23. https://doi.org/10.1016/S0168-9002(01)00769-0
- Procureur S., Ball J., Konczykowski P., Moreno B., Moutarde H., Sabatie F. // Nucl. Instrum. and Methods Phys. Res. A. 2010. V. 621. P. 177. https://doi.org/10.1016/j.nima.2010.05.024
- Sauli F. // Nucl. Instrum. and Methods Phys. Res. A. 2002. V. 477. P. 1. https://doi.org/10.1016/S0168-9002(01)01903-9
- Fonte P., Peskov V., Ramsey B.D. // IEEE Trans. Nucl. Scie. 1999. V. 46. P. 321. doi 775537. https://doi.org/10.1109/23
- Nappi E., Peskov V. Imaging gaseous detectors and their applications. Hoboken. NY: Willey, 2013. https://doi.org/10.1002/9783527640294
- Malter L. // Phys. Rev. 1936. V. 50. P. 48. https://doi.org/10.1103/Phys.Rev.50.48
- Iacobaeus C., Danielsson M., Fonte P., Francke T., Ostling J., Peskov V. // IEEE Transactions on NS. 2002. V. 49. № 4 . P. 1622. https://doi.org/10.1109/TNS.2002.801480
- Fonte P., Peskov V., Ramsey B.D. // Nucl. Instrum. and Methods Phys. Res. A. 1998. V. 416. P. 23. https://doi.org/10.1016/SO168-9002(98)00649-4
- Bachmann S., Bressan A., Capeans M. // Nucl. Instrum. and Methods. Phys. Res. A. 2002. V. 479. P. 294. https://doi.org/10.1016/SO168-9002(01)00931-7
- Procureur S., Aune S., Ball J., Charles G., Moreno B., Moutarde H. // Nucl. Instrum. and Methods A. 2011. V. 659. № 1. P. 91. https://doi.org/10.1016/j.nima.2011.08.033
- Procureur S., Aune S., Ball J., Charles G., Moreno B., Moutarde H., Sabatie F. // JINST. 2012. V. 7 № 6. P. C06009. https://doi.org/10.1088/1748-0221/7/06/C06009д
Supplementary files
