Greenhouse Gas Fluxes and Carbon Storages in Oligotrophic Peat Soils of Western Siberia

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The carbon reserves (C) and the rates of emission of greenhouse gases (CO₂and CH4) in peat soils of Western Siberia have been studied. The peat soils are typical for region oligotrophic ones (Histosols), but they develop in two contrasting bog ecosystems (a forested bog and an open bog), therefore, they differ significantly in modern vegetation cover, soil profile structure, hydrological and temperature conditions. It has been shown that the carbon reserves in the studied peat soils in the 0–50 cm layer are 9.3 and 6.8 kg/m² in the forested and open bogs, respectively. Measurements of CO₂and CH4 emissions were carried out by the chamber static method during the growing seasons from 1999 to 2014. The results showed that the studied soils release into the atmosphere the same number of CO₂(116.1 and 123.4 mg/(m² h) for soil in a forested and open bog, respectively), but at the same time significantly differ number of CH4 (0.57 and 2.66 mg/(m² h), respectively). This research has highlighted an important role of vegetation species composition and hydrological regime in estimates of carbon deposition and greenhouse gas fluxes from peat oligotrophic soils of bog ecosystems in the region.

全文:

受限制的访问

作者简介

E. Golovatskaya

Institute of monitoring of climatic and ecological systems SB RAS

编辑信件的主要联系方式.
Email: golovatskayaea@gmail.com
ORCID iD: 0000-0003-4354-7156
俄罗斯联邦, Tomsk, 634055

E. Veretennikova

Institute of monitoring of climatic and ecological systems SB RAS; Siberian State Medical University

Email: golovatskayaea@gmail.com
俄罗斯联邦, Tomsk, 634055; Tomsk, 634050

E. Dyukarev

Institute of monitoring of climatic and ecological systems SB RAS; Yugra State University

Email: golovatskayaea@gmail.com
俄罗斯联邦, Tomsk, 634055; Khanty-Mansiysk, 628012

参考

  1. Базин Е.Т., Копенкин В.Д., Косов В.И., Корчунов С./С., Петрович В.М. Технический анализ торфа. М.: Недра, 1992. 431 с.
  2. Вомперский С.Э. Роль болот в круговороте углерода // Чтения памяти академика В.Н. Сукачева. XI. Биогеоценотические особенности болот и их рациональное использование. М.: Наука, 1994. 37 c.
  3. Глаголев М.В., Шнырев Н.А. Летне-осенняя эмиссия CH₄ естественными болотами Томской области и возможности ее пространственно-временной экстраполяции // Вестник Моск. ун-та. Сер. 17, почвоведение. 2008. № 2. С. 24–36.
  4. Головацкая Е.А., Дюкарев Е.А. Интенсивность продуцирования CO₂ сфагновыми торфами в нативных условиях // Материалы Второго междунар. полевого симп. “Торфяники Западной Сибири и цикл углерода: прошлое и настоящее”. Ханты-Мансийск: Изд-во НТЛ, 2007. C. 130–131.
  5. Головацкая Е.А. Интенсивность продуцирования углекислого газа торфами олиготрофного болота // Материалы докл. “Одиннадцатое сибирское совещание по климато-экологическому мониторингу”. Томск, 2015. С. 105–106.
  6. Головацкая Е.А., Дюкарев Е.А., Веретенникова Е.Э., Никонова Л.Г., Смирнов С.В. Оценка динамики баланса углерода в болотах южнотаежной подзоны Западной Сибири (Томская область) // Почвы и окружающая среда. 2022. № 5(4). С. 1–18. https://doi.org/10.31251/pos.v5i4.194
  7. Ефремов С.П., Ефремова Т.Т., Мелентьева Н.В. Запасы углерода в экосистемах болот // Углерод в экосистемах лесов и болот России. Красноярск, 1994. С. 128–139.
  8. Кураков С.А., Крутиков В.А., Ушаков В.Г. Автономный измеритель профиля температуры АИПТ // Приборы и техника эксперимента. 2008. № 5. С. 166–167.
  9. Лисс О.Л., Абрамова Л.И., Аветов Н.А., Березина Н.А., Инишева Л.И., Курнишкова Т.В., Слука З.А. и др. Болотные системы Западной Сибири и их природоохранное значение. Тула: Гриф и К, 2001. 584 с.
  10. Наумов А.В., Косых Н.П., Миронычева-Токарева Н.П., Паршина Е.К. Углеродный баланс в болотных экосистемах Западной Сибири // Сиб. экол. журн. 2007. № 5. С. 771–779.
  11. Сабреков А.Ф., Глаголев М.В., Клепцова И.Е., Мачида Т., Максютов Ш.Ш. Эмиссия метана из болотных комплексов тайги Западной Сибири // Почвоведение. 2014. № 1. С. 58–70. https://doi.org/10.7868/S0032180X14010092
  12. Теория и практика химического анализа почв / Под ред. Воробьевой Л.А. М.: ГЕОС, 2006 г. 400 с.
  13. Титлянова А.А., Булавко Г.И., Кудряшова С.Я., Наумов А.В., Смирнов В.В., Танасиенко А.А. Запасы и потери органического углерода в почвах Сибири // Почвоведение. 1998. № 1. С. 51–59.
  14. Baiser B., Lockwood J.L. The relationship between functional and taxonomic homogenization // Global Ecology and Biogeography. 2011. V. 20(1). P. 134–144. https://doi.org/10.1111/j.1466–8238.2010.00583.x
  15. Blodau C., Siems M. Drainage-induced forest growth alters belowground carbon biogeochemistry in the Mer Bleue bog Canada // Biogeochemistry. 2012. V. 107. P. 107–123. https://doi.org/10.1007/s10533-010-9535-1
  16. Bridgham S.D., Cadillo-Quiroz H., Keller J.K., Zhuang Q. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales // Glob. Chang. Biol. 2013. V. 19. P. 1325–1346. https://doi.org/10.1111/gcb.12131
  17. Bubier J.L., Crill P.M., Mosedale A., Frolking S., Linder E. Peatland responses to varying interannual moisture conditions as measured by automatic CO₂chambers // Global Biogeochem. Cycles. 2003. V. 17. № 2. P. 1066. https://doi.org/10.1029/2002GB001946
  18. de Graaff M.-A., Jastrow J.D., Gillette S., Johns A, Wullschleger S.D. Differential priming of soil carbon driven by soil depth and root impacts on carbon availability // Soil Biol. Biochem. 2014. V. 69. P. 147–156. https://doi.org/10.1016/j.soilbio.2013.10.047
  19. Dyukarev E.A., Alekseeva M.N., Golovatskaya E.A. A study of the vegetation cover of bog ecosystems by satellite data // Izv. Atmos. Ocean. Phys. 2017. V. 53. P. 1029–1041. https://doi.org/10.1134/S0001433817090092
  20. Freeman C., Ostle N.J., Fenner N., Kang H. A regulatory role for phenol oxidase during decomposition in peatlands // Soil Biol. Biochem. 2004. V. 36. P. 1663–1667. https://doi. org/10.1016/j.soilbio.2004.07.012
  21. Golovatskaya E.A., Dyukarev E.A. Carbon budget of oligotrophic bog in southern taiga in Western Siberia // Plant and Soil. 2009. V. 315. P. 19–34.
  22. Gorham E. Canada’s peatlands: their importance for the global carbon cycle and possible effects of “greenhouse” climatic warming // Trans. Royal Soc. Canada. Ser. V. 1988. V. 3. P. 21–23. https://doi.org/10.2307/1941811
  23. Hirano T. Seasonal and diurnal variations in topsoil and subsoil respiration under snowpack in a temperate deciduous forest // Global Biogeochem. Cycles. 2005. V. 19. P. GB2011. https://doi.org/10.1029/2004GB002259
  24. IPCC, 2021: Index. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FrontMatter.pdf (дата обращения 03.12.2022).
  25. Lafleur P.M., Moore T.R., Roulet N.T., Frolking S. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table // Ecosystems. 2005. V. 8. P. 619–629. https://doi.org/10.1007/s10021–003–0131–2
  26. Lai D.Y.F., Moore T.R., Roulet N.T. Spatial and temporal variations of methane flux measured by autochambers in a temperate ombrotrophic peatland // J. Geophys. Res. 2014. V. 119 P. 864–880. https://doi.org/10.1002/2013JG002410
  27. Mitsch W.J., Bernal B., Nahlik A., Mander Ü., Zhang L., Anderson C., Jørgensen S. et al. Wetlands, carbon, and climate change // Landsc. Ecol. 2013. V. 28. P. 583–597. https:// doi.org/10.1007/s10980-012-9758-8
  28. Moore T.R., Dalva M. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils // J. Soil Sci. 1993. V. 44. P. 651–664. https://doi.org/10.1111/j.1365-2389.1993.tb02330.x
  29. Neubauer S. On the challenges of modeling the net radiative forcing of wetlands: reconsidering Mitsch et al. 2013 // Landsc. Ecol. 2014. V. 29. P. 571–577. https://doi.org/10.1007/s10980-014-9986-1
  30. Neubauer S., Megonigal J.P. Moving beyond global warming potentials to quantify the climatic role of ecosystems // Ecosystems. 2015. V. 18. P. 1000–1013. https://doi.org/10.1007/s10021-015-9879-4
  31. Poveda, G., Álvarez, D.M., Rueda, Ó.A. Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots // Clim. Dyn. 2011. V. 36. P. 2233–2249. https://doi.org/10.1007/s00382-010-0931-y
  32. Rinne J., Tuittila E.S., Peltola O., Li X., Raivonen M., Alekseychik P., Haapanala S., Pihlatie M. et al. Temporal variation of ecosystem scale methane emission from a boreal fen in relation to temperature, water table position, and carbon dioxide fluxes // Global Biogeochem. Cycles. 2018. V. 32. P. 1087–1106. https://doi.org/10.1029/2017GB005747
  33. Ruiz, D., Moreno, H.A., Gutiérrez, M.E., Zapata, P.A. Changing climate and endangered high mountain ecosystems in Colombia // Sci. Total Environ. 2008. V. 398(1–3). P. 122–132. https://doi.org/10.1016/j.scitotenv.2008.02.038
  34. Saarnio S., Alm J., Martikainen P.J., Silvola J. Effects of raised carbon dioxide on potential methane production and oxidation in, and methane emission from a boreal mire // J. Ecology. 1998. V. 86. P. 261–268.
  35. Shannon C.E., Weaver W. The Mathematical Theory of Communication. Urbana: The University of Illinois Press, 1949. P. 1–117.
  36. Strack M., Waddington J.M. Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment // Glob. Biogeochem. Cycles. 2007. V. 21. № 1. https://doi.org/10.1029/2006GB002715
  37. Succow M. Landschafts ökologische Moorkunde. Stuttgart: Schweizerbart Science Publishers, 2001. 622 p.
  38. Updegraff K., Bridgham S.D., Pastor J., Weishampel P. Hysteresis in the temperature response of carbon dioxide and methane production in peat soils // Biogeochemistry. 1998. V. 43. P. 253–272. https://doi.org/10.1023/A:1006097808262
  39. Wang Y., Wang H., He J.-S., Feng X. Iron-mediated soil carbon response to watertable decline in an alpine wetland // Nat. Commun. 2017. V. 8. P. 15972.
  40. Wickland K.P., Striegl R.G., Mast M.A., Clow D.W. Carbon gas exchange at a southern Rocky Mountain wetland, 1996–1998 // Global Biogeochem. Cycles. 2001. V. 15(2). P. 321–335.

补充文件

附件文件
动作
1. JATS XML
2. Fig.1

下载 (201KB)
3. Fig.2

下载 (295KB)
4. Fig.3

下载 (121KB)
5. Fig.4

下载 (94KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##